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TERMINOLOGY 

Airframe.  The airlifting component of a small Unmanned Aircraft System (sUAS); does not 
include the sensor. 
 
Area Under the Curve.  Area under the curve (AUC) is a standard metric to quantitatively 
determine the performance of a binary classifier system. 
 
Artificial Intelligence.  A branch of computer science seeking to simulate intelligent behavior. 
 
Binary Classifier.  A supervised learning algorithm that categorizes observations into one of 
two classes. 
 
Data Labeling.  The process by which elements in a dataset are manually labeled to indicate 
which category they belong to. This information is used by supervised learning algorithms as 
part of their training process and used by all machine learning algorithms in order to analyze 
their performance. 
 
Deep Learning.  A Machine Learning (ML) system where an architecture of artificial neurons 
(simulated in computer software or hardware) are constructed in layers. The depth of the network 
is based on the number of neuron layers. 
 
False Negative.  In terms of the output of the foreign object debris (FOD) detection algorithm, a 
“Negative” result is an indication that FOD has NOT been detected. A "False Negative” is a 
negative result that is incorrect. In this case, there is FOD present, but the algorithm did not 
detect it. 
 
False Positive.  In terms of the output of the FOD detection algorithm, a “Positive" result is an 
indication that FOD has been detected. A "False Positive” is a positive result that is incorrect. In 
this case, the algorithm detected FOD where there was none. 
 
Foreign Object Debris.  Any object located in an inappropriate location in the airport 
environment that has the capacity to injure airport or airline personnel and damage aircraft. 
 
Ground Sampling Distance.  The distance, as measured along the ground, between adjacent 
pixels in an image. Ground Sampling Distance governs how much information can be inferred 
about features from image measurements. The Ground Sampling Distance and image resolution 
determine the size of the footprint of the image captured by the sensor. 
 
Machine Learning.  A field in computer science devoted to creating methods where software 
can learn from data to improve performance on a specified task. 
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Nadir.  Nadir is the angle between the image acquisition platform and the Earth's surface. This 
angle is typically measured in degrees, with nadir being 0 degrees (looking straight down, 
perpendicular to the Earth’s surface) and the horizon being 90 degrees. 
 
Oblique.  Oblique orientation captures imagery at any non-nadir angle, typically between the 
horizon and -45 degrees to the ground.  
 
Overlap.  Forward overlap is the amount of coverage between consecutive images along the 
same flight line, as measured in percentages. Side overlap is the amount of coverage between 
images in adjacent flight lines, as measured in percentage. 
 
Receiver Operating Characteristic curves.  Graphical plots that summarize the performance of 
a binary classifier system that show the true positive rate (sensitivity) on the y-axis and the false 
positive rate (1 – specificity) on the x-axis across multiple confidence thresholds. 
 
Supervised Learning. A machine learning paradigm whereby the algorithm learns to distinguish 
between two or more categories of data. The training data presented to the algorithm is pre-
labeled to indicate which category each individual datum belongs to. 
 
Sensor. The sensor in a digital camera is a light-sensitive chip that records the image as a pattern 
of tiny squares, called pixels. The more photosites a sensor has, the higher the resolution of the 
image will be. 
 
Small Unmanned Aircraft. An unmanned aircraft weighing less than 55 pounds on takeoff, 
including everything that is on board or otherwise attached to the aircraft. 
 
Small Unmanned Aircraft System. A small, unmanned aircraft and its associated elements 
(including communication links and the components that control the small, unmanned aircraft) 
that are required for the safe and efficient operation of the small, unmanned aircraft in the 
national airspace system. 
 
Test Imagery Limits. A smaller and more refined area of the training imagery limits to facilitate 
smooth test imagery collection times and field-testing logistics. A reduced subset of imagery 
compared to the training imagery limits was collected from these limits. 
 
Training Imagery Limits. A determined area or areas of pavement that contain a vast diversity 
of surface conditions, types, and airport features or structures found in the airport environment. 
The limits are the imagery collection areas for training the deep learning network’s library of 
information.  
 
True Negative. In terms of the output of the FOD detection algorithm, a “Negative” result is an 
indication that FOD has NOT been detected. A “True Negative" is a negative result that is 
correct and matches the state of the world. In this case, there is no FOD present, and the 
algorithm did not report any. 
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True Positive. In terms of the output of the FOD detection algorithm, a “positive" result is an 
indication that FOD has been detected. A “true positive” is a positive result that is correct and 
matches the state of the world. In this case, the algorithm correctly identified a real piece of 
FOD. 
 
Unsupervised Learning. An ML paradigm where an algorithm learns to identify patterns in a 
dataset where no knowledge or category information is provided. 
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EXECUTIVE SUMMARY 

Foreign Object Debris (FOD) can create significant safety implications for aircraft, personnel 
and is a continuous concern in the airport environment. The Federal Aviation Administration 
(FAA) Airport Technology Research and Development (ATR) Branch conducted a research 
effort to explore the feasibility and maturity of using commercially-available small unmanned 
aircraft systems (sUAS) and artificial intelligence/machine learning (AI/ML) algorithms to detect 
FOD on airport surfaces. The objectives of this research effort were to develop a novel, proof-of-
concept sUAS-based FOD detection workflow using AI/ML algorithms and to assess the 
workflow to determine whether it is capable of meeting all, some, or none of the requirements in 
FAA Advisory Circular (AC) 150/5220-24, Airport Foreign Object Debris Detection Equipment. 
 
The research team developed and trained an AI/ML deep learning network as part of a sUAS-
based FOD detection workflow. The research team conducted initial testing of this workflow at 
Cape May County Airport (WWD). The initial test effort at WWD comprised three stages: 
small-scale testing, calibration, and full-scale testing, each serving specific purposes. In the 
small-scale test stage, the primary focus was to identify initial standardized test items using 
black, white, and gray spheres, as specified in AC 150/5220-24 (i.e., the size of a standard golf 
ball),  while simultaneously collecting essential data for training AI/ML algorithms. 
Subsequently, the calibration test stage introduced additional complexities to challenge the 
trained algorithms, incorporating factors such as variations in ground sampling distance (GSD) 
and the inclusion of additional FOD items. This stage aimed to enhance the algorithms’ 
adaptability and performance. Finally, the full-scale test stage was conducted on an entire 
runway, encompassing the full range of AC 150/5220-24 FOD items. Leveraging the knowledge 
acquired from the previous test stages, this final stage served to assess the detection efficacy of 
the AI/ML algorithms while incorporating lessons learned and refining the detection process. 

The research team then performed validation testing at Atlantic City International Airport (ACY) 
to validate the initial testing at WWD. This included collecting data on a runway at ACY, 
training an anomaly detection AI/ML algorithm, testing against a variety of FOD targets and 
addressing requirements such as implementing geolocation, and adhering to accuracy 
requirements set forth in FAA AC 150/5220-24.  

The sUAS-based FOD detection workflow used the FastFlow ML deep learning algorithm and 
was capable of meeting some of the AC 150/5220-24 requirements, including achieving a 96% 
overall detection rate for FOD items specified in the AC. However, to meet the full set of AC 
150/5220-24 requirements, further research and development on this technology is needed , 
including reducing the false positive rate, reducing the data processing time, implementing a 
software interface for displaying and recording FOD detection alerts, and detecting FOD in low-
light and inclement weather conditions.  
 
Finally, this testing led to the identification of best methods for data collection. Images captured 
from a nadir vantage point had a significantly higher true positive detection rate than images 
captured from an oblique vantage point. Positive detection rate was also improved by flying the 
sUAS lower to the runway for a 0.2-cm GSD, which increased the image resolution.  



 

1 

1.  INTRODUCTION 

The Federal Aviation Administration (FAA) Airport Technology Research and Development 
(ATR) Branch conducted a research effort to evaluate the feasibility of using commercially 
available small unmanned aircraft systems (sUASs)1 and artificial intelligence/machine learning 
(AI/ML) algorithms to detect foreign object debris (FOD) on airport surfaces. This report 
summarizes the research conducted and results obtained from testing conducted in two different 
airport environments.  
 
1.1  BACKGROUND 

The presence of FOD on airport surfaces is a continuous concern for airport operators and poses 
a significant hazard to aviation safety and the traveling public. The standard, and most practiced, 
FOD identification method at airports is visual inspections. The challenges of frequent 
inspections are unique to each airport but are mostly centered on aircraft activity (runway usage) 
and the size of area inspected relative to the human resource constraints and visual inspection 
capabilities.  
 
FOD can include anything from a small rock to a large bird, and it can cause extensive damage 
to aircraft engines, landing gear, and other critical components of safe aircraft operations. 
Airlines have implemented various strategies, such as developing checklists, that detail the 
specific areas of the aircraft that need to be inspected to mitigate FOD damage, but the cost of 
damage and delays continue to rise. The FAA report, Foreign Object Debris Characterization at 
a Large International Airport (2015), noted:  
 

Costs [for FOD-caused damage] to one major airline average $15,000 per aircraft, which 
represents an industry cost of over $60 million per year. This is the equivalent of one new 
medium-sized transport category jet.  

 
Therefore, airports are looking for new ways to improve their FOD control programs. One 
potential solution is the use of automated FOD detection technologies that include mobile, radar, 
electro-optical (EO), or hybrid technologies; however, these are typically costly systems that 
may require specific installation. Interest in automated detection systems to identify FOD at 
airports, including leveraging sophisticated AI and ML algorithms and sUAS-based solutions, is 
growing due to the cost-effective nature of commercially available sUAS. 
 
sUASs deliver proven capabilities in collecting high-resolution imagery and video for a variety 
of practical use cases. Their data collection ability, tied with low upfront cost and the efficiency 
of the technology, allows for implementation in applications such as mapping, surveying, 
obstruction analysis, condition assessments, and surveillance. With the increased capability and 
integration of sUAS across industries, research is being conducted to determine the feasibility, 
considerations, technical specifications, and policies of using sUAS for FOD detection in an 
airport environment.  

 
 

1 Small UASs are defined in Title 14 Code of Federal Regulations (C.F.R.) Part 107.3, Definitions, as unmanned aircraft weighing less than 55 
pounds on takeoff, including everything that is on board or otherwise attached to the aircraft (Definitions, 2016). 
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This report provides a comprehensive overview of the research conducted. The report 
encompasses an in-depth account of the research methodology employed and outlines the 
outcomes of multiple iterative tests, including the results obtained from testing conducted in two 
different airport environments.  
 
1.2  PURPOSE 

The purpose of this research effort is to assess the feasibility and maturity of sUAS-based FOD 
detection on airport surfaces. 

1.3  OBJECTIVES 

This research effort had the following primary objectives: 

1. Develop a novel, proof-of-concept sUAS-based FOD detection workflow using AI/ML 
algorithms. 

2. Assess the performance of the sUAS FOD detection workflow to determine whether it is 
capable of meeting all, some, or none of the requirements in FAA AC 150/5220-24, 
Airport Foreign Object Debris Detection Equipment (2009). 

1.4  RELATED DOCUMENTS 

1. FAA AC 150/5220-24, Airport Foreign Object Debris (FOD) Detection Equipment 
2. FAA AC 150/5210-24, Airport Foreign Object Debris (FOD) Management 
3. 14 Code of Federal Regulations (CFR) Part 107, Small Unmanned Aircraft Systems 
 

2.  PERFORMANCE REQUIREMENTS FOR FOD DETECTION SYSTEMS 

FAA performance specifications for FOD detection systems are contained in AC 150/5220-24 
(FAA, 2009). This AC is directly relevant to this research effort as it set a baseline set of 
requirements against which the sUAS-based FOD detection technology could be assessed. 
Chapters 1 and 2 of the AC provide a general introduction to FOD such as FOD hazard, types, 
and sources. Four types of detection systems are discussed in this AC, including: stationary 
radar; stationary EO; stationary hybrid radar and EO; and mobile radar. AC 150/5220-24 defines 
requirements for basic functions, performance, system output, data presentation and data 
management standards.  
 
Tables 1 through 4 below provide a summary of these requirements. 
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Table 1. Basic Performance Requirements 

Category Basic Performance Requirement 

Basic 
Functions 

Provide surveillance in the Airport Operations Area (AOA) as specified by 
the airport 
Detect and locate single and multiple FOD items on the AOA 
Provide an alert to the user when FOD has been detected 
Operate in conjunction with, and not interfere with, airport and aircraft 
communication, navigation, and surveillance systems 
Operate in conjunction with, and without interference from, normal airport 
and aircraft operations 
Provide a data record of detected FOD, allowing for equipment calibration 
and maintenance, and for analysis of the FOD event 

Table 2. Detection Performance Requirements 

Category Detection Performance Object Dimensions 

Object 
Detection 

An unpainted metal cylinder 1.2 in. (3.1 cm) high and 1.5 in. (3.8 cm) in 
diameter 

A white, gray, or black sphere 1.7 in. (4.3 cm) in diameter (i.e., a standard-
sized golf ball) 

90% of the following group of objects when placed within a 100-ft by 100-ft 
(30-m by 30-m) square in the desired coverage area. One item from each 

category must be included in the group. 
A “chunk” of asphalt or 
concrete 

No larger than 4 in. (10 cm) in any 
dimension 

Any portion of a runway light 
fixture (in-pavement or edge 
light) 

No larger than 4 in. (10 cm) in any 
dimension 

An adjustable crescent 
wrench Up to 8 in. (20 cm) in length 

A deep socket  At least 2 in. (5 cm) in length 
A piece of rubber from an 
aircraft tire 

No larger than 4 in. (10 cm) in any 
dimension 

A distorted metal strip Up to 8 in. (20 cm) in length 

A fuel cap No larger than 4 in. (10 cm) in any 
dimension 

A lug nut No larger than 4 in. (10 cm) in any 
dimension 

A hydraulic line Up to 8 in. (20 cm) in length 
A white polyvinyl chloride 
(PVC) pipe 2 in. (5 cm) in diameter 

Any two of the objects above, located no more than 10 ft (3 m) apart from 
each other, identified as separate objects 
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Table 3. Detection Performance Requirements 

Category Detection Performance Performance Requirement 
Location 
Accuracy 

Must provide location information 
for a detected object 

Within 16 ft (5.0 m) of the actual 
FOD object location 

Inspection 
Frequency Mobile detection systems Airport dependent 

 Surveillance 
Area 

Airport operator will specify the 
desired surveillance (detection) area 
in the AOA requiring FOD detection. 

Manufacturer of a FOD detection 
system must notify the airport 
operator of any locations within the 
specified surveillance area where 
detection would not be possible. 

Weather 
Must demonstrate the detection 
performance under both clear and 
inclement weather conditions 

Detect FOD under rain snow, clear 
and inclement weather, lighting 
conditions, and time required for 
the system to recover after 
inclement weather 

Alerts and 
Alarms 

Must be able to alert the system 
operator to the presence of FOD in 
scanned areas with enough 
information to assess the severity of 
the hazard in order to determine if 
immediate object removal is 
necessary 

False alarms should be minimal—1 
per day with visual capabilities, 3 
per day without visual capabilities 

Table 4. System Output Requirements 

Category System Output Performance Requirement 

Detection Data Data record on detected FOD Alert time, date, location (at 
minimum) 

Data 
Presentation 

Coordinate scheme on maps of the 
airport, in an operator’s console, or 
broadcast to mobile units 

As specified by the airport 

Data 
Management Digital record 

Capability to retain the data for at 
least 2 years after the detection 
event 

3.  RESEARCH APPROACH 

Sections 3.1–3.6 provide an overview of the research approach and methodology.  
 
3.1  TEST STAGES 

As shown in Figure 1, the testing effort took place in three stages: small-scale, calibration, and 
full-scale/validation testing, each serving specific purposes. In the small-scale test stage, the 
primary focus was on identifying black, white, and gray spheres specified in AC 150/5220-24 as 
initial standardized items, while simultaneously collecting essential data for training AI/ML 
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algorithms. Subsequently, the calibration test stage introduced additional complexities to 
challenge the trained algorithms, incorporating factors such as variations in ground sampling 
distance (GSD) and the inclusion of additional FOD items. This stage aimed to enhance the 
algorithms’ adaptability and performance. Finally, the full-scale test stage was conducted on an 
entire runway, encompassing the full range of AC 150/5220-24 FOD items. Leveraging the 
knowledge acquired from the previous test stages, this final stage served to assess the detection 
efficacy of the AI/ML algorithms while incorporating lessons learned and refining the detection 
process.  
 
The research team conducted most of the testing at Cape May County Airport (WWD) and 
performed final testing at Atlantic City International Airport (ACY) to validate the WWD 
testing. This included collecting data on a runway at ACY, training an anomaly detection AI/ML 
algorithm, testing against a variety of FOD targets, and addressing requirements conveyed in 
FAA AC 150/5220-24, Airport Foreign Object Debris Detection Equipment (2009), such as 
implementing geolocation and adhering to accuracy requirements.  
 

 
Figure 1. Study Conception and Design  

3.2  SMALL UNMANNED AIRCRAFT SYSTEM PLATFORMS AND PAYLOADS 

The research effort incorporated two commercially available sUAS models: the DJI M210 real-
time kinematic (RTK) v2 and the DJI M300 RTK. Figure 2 depicts the DJI M210 RTK v2, 
which was equipped with a Zenmuse X7 EO sensor with a focal length of 50 mm. However, the 
M210 RTK v2, X7 airframe was solely used during the small-scale test stage of the research. 
Subsequently, the DJI M300 RTK, coupled with a Zenmuse P1 sensor, was selected for the 
calibration, full-scale, and validation testing. The decision to switch to the DJI M300 RTK 
airframe, as depicted in Figure 3, was based on its sensors’ enhanced image resolution, which 
would result in each image crop having significantly more detail, thereby improving the 
detection algorithm's performance. Moreover, the adoption of the DJI M300 RTK brought 
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advantages such as extended flight time, enhanced position accuracy, and increased hardware 
reliability. The transition from the DJI M210 and X7 used during the initial testing to the DJI 
M300 and P1 represented an overall upgrade without any adverse effects on the quality of the 
training data parameters or data processing. For detailed specifications of the airframe and 
sensors, refer to Appendix A.  

 

Figure 2. DJI M210 RTK v2 with a Zenmuse X7 

 

Figure 3. DJI M300 RTK with a Zenmuse P1 

During testing, two sUAS mission planning software applications were employed. Initially, DJI 
GS Pro software was used exclusively in the initial test stage, specifically designed to support the 
DJI M210 RTK v2 airframe. Subsequently, for all other test stages, DJI Pilot 2 software was 
adopted, which is compatible with the DJI M300 RTK airframe. Both software solutions 
exhibited ample flexibility in facilitating the collection of nadir and oblique imagery. The 
research team gathered imagery in either the “RAW” or “DNG” data format, depending on the 
specific airframe used. 
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3.3  AI/ML ALGORITHMS 

The research team conducted a literature review to identify the most suitable AI/ML algorithms 
for testing. Based on this literature review, the research team selected the following two deep 
learning algorithms: omni-frequency channel-selection reconstruction—generative adversarial 
network (OCR-GAN) and FastFlow. A significant benefit of both algorithms is that they do not 
require training data that is manually annotated with ground truth labels. These are described in 
further detail in Sections 3.3.1 and 3.3.2. 
 
3.3.1  Omni-Frequency Channel-Selection Reconstruction—Generative Adversarial Network 

OCR-GAN is a reconstruction-based deep learning algorithm that has been shown in various 
studies to be highly effective for anomaly detection (Zhou & Paffenroth, 2017; Deecke et al., 
2019; Di Mattia et al., 2021; Liang et al., 2022). Reconstruction-based algorithms such as OCR-
GAN perform anomaly detection by deconstructing an input image into a set of “features” that 
are learned during the training process; then, the algorithm reconstructs the image using those 
features. 
 
The OCR-GAN algorithm was selected based on its performance with MVTec, which is one of 
the most popular datasets for testing anomaly detection algorithms (Bergmann et al., 2021). This 
algorithm uses a unique approach that fixes the problems other GAN-based methods sometimes 
encounter where they become so good at reconstruction that even the anomalies may still be 
reproduced. While many alternative deep learning systems must supplement MVTec training 
data to achieve their competitive results on the test set, OCR-GAN does not require this and 
achieves its performance solely on the provided training data. This smaller data requirement 
greatly simplifies the process by which training data must be obtained and processed. 
 
3.3.2  FastFlow 

FastFlow is a feature-extraction-based algorithm. Feature-extraction algorithms use various 
methods to extract features and convert images into quickly comparable combinations of features 
(Rao et al., 2017; Tayeh et al., 2020; Cohen & Avidan, 2021; Bergmann et al., 2020; Reiss et al., 
2021; Yu et al., 2021). However, these algorithms often require additional training data to match 
or surpass the performance of reconstruction-based methods. In feature-extraction-based 
algorithms, images are dissected into collections of distinctive features, and a database is 
maintained to track encountered features during training. Anomalies are detected when the input 
images contain features that differ from those in the training dataset. 
 
FastFlow was selected for this study due to its superior performance on the MVTec dataset. 
Another reason for investigating feature-extraction-based methods is their relatively lower 
computational resource requirements, including random-access memory (RAM) and central 
processing unit (CPU) time, compared to reconstruction-based methods. This advantage enables 
the processing of a greater number of images within the same timeframe and enhances the 
functionality of real-time systems that necessitate continuous image processing at a high pace. 
Figure 4 shows an overview of the FastFlow architecture (Yu et al., 2021).  
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Figure 4. Overview of the FastFlow Architecture 
 

3.4  FOREIGN OBJECT DEBRIS TEST ITEMS 

Two primary types of test items were used: standardized targets with uniform dimensions (golf 
balls) and the FOD items listed in AC 150/5220-24. 

1. Standardized Targets—Golf balls in white, gray, and black. 
 
Golf balls, as shown in Figure 5, were used as standard targets throughout each test stage. 
The utilization of a single shape, the sphere, in three different colors, intended to control 
the test item variable to assess the efficacy of the AI/ML algorithms of detecting items of 
varying contrast relative to the color of pavement. Contrast is one of the most important 
variables affecting the success of ML algorithms using red, green, blue (RGB) imagery.  
 

 

Figure 5. Golf Balls in White, Gray, and Black 

2. AC 150/5220-24 Test Items 
 
During full-scale and validation testing, a variety of test items were introduced, 
consisting of fuel caps, hydraulic hoses, taxi lights, wrenches, PVC pipes, rubber scraps, 
sockets, nuts and bolts, asphalt chunks, metal pipes, and metal scraps. These test items 
are shown in Figure 6. 
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Figure 6. Array of FOD Test Items 

3.5  OPERATIONS AND SAFETY FOR SMALL UNMANNED AIRCRAFT SYSTEMS 

To conduct the research testing efforts as intended, the research team diligently carried out 
airport coordination measures. All sUAS operations were conducted during scheduled runway 
maintenance closures. Prior to commencing operations, an sUAS Operations License Agreement 
was established with the Delaware River & Bay Authority (DRBA), acting as the sponsor to 
WWD. This agreement outlined the general operational characteristics and limitations related to 
sUAS activities. Additionally, the research team obtained an airspace authorization for ACY and 
coordinated with airport operations personnel with the South Jersey Transportation Authority 
(SJTA). 

As a further safety step, the research team effectively communicated and submitted a Notice of 
Proposed sUAS Operation form to each respective airport when scheduling sUAS flight 
operations. This form served as an operational communication to the airport operator to simplify 
the Notice to Air Mission (NOTAM) process by providing comprehensive mission details, such 
as date, time, duration, altitude, and the specific location(s) of operations on the airfield. Upon 
approval, the airport issued a NOTAM to ensure traditional aviation pilots were aware of the 
sUAS operations, including the designated time, location, and maximum altitude.  

To reduce the inherent risk involved in placing FOD on an airport surface, the research team 
implemented procedures and followed safety precautions when placing and removing FOD. As a 
safety measure for FOD being left on the airfield, the research team employed an inventory and 
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storage solution as illustrated in Figure 7. Each FOD item was accounted for when being placed, 
and again when being picked up. The solution allowed the team to manage inventory and 
accountability prior to the departure from the AOA. Additionally, the research team inspected 
the test area prior to testing and removed any FOD that was present. Following each testing 
effort, a FOD walk was conducted to ensure that the test areas were left FOD-free and safe for 
aircraft activity. 

 

Figure 7. Inventory and Storage Solution for FOD Items 

3.6  DATA PROCESSING AND ANALYSIS WORKFLOW 

The following section outlines the processes in the data workflow methodology developed for 
the testing. The data analysis workflow consists of multiple steps, summarized in Figure 8. 
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Figure 8. Data Analysis Workflow 

3.6.1  Collect Data 

The Collect Data step involved deploying the sUAS over the test areas to collect imagery. The 
first dataset was collected over the test areas with no FOD present. The second dataset was 
collected over the test areas with FOD present. The data without FOD was intended to train and 
provide the AI/ML algorithms reference images, whereas the data with FOD was intended to 
assess the algorithm’s performance at detecting FOD as anomalies. After each data collection 
exercise, the images were copied from the sUAS onto a computer that ran the FOD detection 
algorithms. Images were separated into 256- by 256-pixel crops for batch processing. The 
research team also used crops from the “test” images to supplement additional training. All FOD 
crops were used for testing, and the non-FOD crops used for testing were randomly sampled 
from both sets of images. 
 
3.6.2  Label Data 

The Label Data step was only required for analyzing the performance of the algorithms as part of 
this research and would not be performed in a real-world deployment of the system. This step 
required that the ground truth location of each piece of FOD on the test areas be known ahead of 
time. The Label Data step was used exclusively to determine the accuracy of the algorithms’ 

Collect Data

• Collect the training image data from the sUAS, which contains no FOD, 
from the sUAS for baselining.

• Collect the testing image data, which contains FOD,  from the sUAS. 

Label Data

• Manually label each instance of FOD found in each of the testing images in 
order to assess detection rate in the future

Train the 
Network

• Train the neural network using the training images without any FOD.

Run the 
Network

• Run the trained neural network over the test images. For each image, generate a 
2D array of possibilities where each pixel represents a probability of FOD.

Generate 
Performance 

Score

• Compare the detected FOD from the neural net to the manually labeled FOD.
• Compute a score for the reported FOD.
• Generate an aggregate performance score across all the tested images.
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performance in the post-processing stage. The process of image labeling consisted of manually 
using an image manipulation program to paint a white pixel overlay on a copy of each image for 
all pixels corresponding to FOD items and a black overlay for all non-FOD pixels. 
 
3.6.3  Train the Network 

Before the neural network could be used to detect FOD, it had to be trained on an initial dataset. 
The training dataset contained images of a clean test area without any FOD. The intent was to 
teach the neural network what a FOD-free area looks like so that any FOD encountered in future 
imagery would appear as anomalies to the network and be flagged. The neural network operated 
on image sizes that are smaller than the raw images taken from sUAS cameras. Therefore, each 
of these large individual images were cropped into many small overlapping sub-image blocks. 
To ensure that there was enough overlap between the crops to avoid missing any test area details, 
the input image width and height was divided by the crop width and height and rounded up. Crop 
locations were selected by spreading this number of crops equally across the width of the image. 
This method of cropping ensured that all pixels collected were used for training. It also 
minimized the amount of overlap that would cause the algorithms to process the same pixels 
multiple times. 

After the training dataset was generated, the neural network went through a traditional deep 
learning training procedure, in which involved the dataset was repeatedly passed through the 
network architecture. Each image processed by the neural network would calculate the output 
error for what the architecture produced versus what it should have produced. This error value 
was used to adjust the parameters of the neural network via an algorithm called backpropagation. 
As the process repeated itself, the error values seen at the output of the networks were reduced, 
and the parameters were optimized. The training process stopped when the error was reduced to 
a level where further training would not generate any improvement. 
 
In the next steps of the research process, the set of cropped images were augmented by 
duplicating and transforming them in various ways to provide additional perspective in training 
the neural network. These additional cropped images were created by rotating and/or mirroring 
the original image crops. Rotating the original images provided the neural network with multiple 
valuable perspectives, as the sUAS could potentially view the test area from any heading or 
direction. However, this is only true when the sUAS is taking images from directly over the 
runway (e.g., in a nadir orientation). If the sUAS were to view the runway from the side (e.g., in 
an oblique orientation), rotating the image could create “upside down” images of the horizon that 
would never actually be encountered. In addition, where possible, horizontal mirroring was 
performed to augment the final dataset. 
 
Finally, to refine the datasets and lower the false positive rate, a standard deviation (SD) filter 
was applied to the input images, which required all images to surpass a threshold of pixel 
intensity SD values before it could be passed to the network for training. The purpose of the SD 
filter was to curate the dataset to have a higher concentration of images with paint, cracks, and 
generally interesting features, while reducing the concentration of just plain flat pavement. The 
SD filter reduced the number of false positives found by increasing the percentage of 
”interesting” non-FOD pavement images used for training, while reducing “uninteresting” 



 

13 

uniform pavement that had no distinguishing marks like paint, tar, or cracks. The SD filtering 
process only removed the plainest images. 
 
3.6.4  Run the Network 

The Run the Network step involved running the trained network on each of the testing dataset 
images to identify the presence of FOD. As with training, each of the raw images were broken 
into a set of overlapping sub-images. The neural network processed each of these input sub-
images and for each sub-image, generated, an output image of the same size where each pixel 
represented a probability that it contains a piece of FOD. 
 
3.6.5  Generate Performance Score 

The Generate Performance Score step provided the research team with quantitative results to 
analyze algorithm performance. The performance score was generated by taking the individual 
pixel probabilities of the output images and comparing them to the pixels in the ground truth 
imagery to score each report. The individual scores were then aggregated to generate a total 
performance score across all images. The scores were used to determine whether reported FOD 
constituted a true positive, false positive, false negative, or true negative when compared to the 
FOD ground truth of the Label Data step. 
 
A set of example outputs from the algorithm are shown in Figure 9. Column 1 is the RGB crop. 
Column 2 shows the manually created ground truth labels. Column 3 shows a probability 
heatmap for all pixels in the image overlayed on the original image (brighter corresponds to 
higher likelihood). Column 4 shows the predicted pixels whose confidence in the heatmap were 
above the determined threshold for a detection. Column 5 shows small clusters on the original 
image from the predicted detection pixels. 
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Figure 9. Example Outputs from the FOD Detection Algorithm 

Quantitative results for the datasets were reported in Receiver Operating Characteristic (ROC) 
curves, which are graphical plots that summarize the performance of a binary classifier system. 
They show the true positive rate (sensitivity) on the y-axis and the false positive rate (1—
specificity) on the x-axis across 90% (initially 60%) confidence thresholds for counting a pixel 
or image as an anomaly (e.g., containing an instance of visible FOD). The ROC curve is a useful 
tool for evaluating the performance of a binary classifier, as it provides a visual representation of 
the trade-off between sensitivity and specificity. A classifier with a high true-positive rate and a 
low false-positive rate will have a high Area Under the Curve (AUC) value, indicating good 
performance. On the other hand, a classifier with a low true-positive rate and a high false-
positive rate will have a low AUC value, indicating poor performance. ROC curves can be used 
to compare the performance of different classifiers, and to choose the optimal discrimination 
threshold for a given classifier. Figure 10 shows a representative ROC curve for one dataset 
processed as part of this research. 
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Figure 10. Representative ROC Curve 

ROC curves were calculated for both pixel-wise and image-wise accuracy. Pixel-wise accuracy 
is a measure of how accurately a model can predict the label or class of each pixel in an image. 
For example, if the model is being used for image segmentation, pixel-wise accuracy measures 
the percentage of pixels that are correctly classified by the model. Image-wise accuracy is a 
measure of how accurately a model can classify an entire image. For example, if the model is 
being used for image classification, image-wise accuracy measures the percentage of images that 
are correctly classified by the model. 

It is important to note that pixel-wise accuracy and image-wise accuracy are not necessarily the 
same, and a model with high pixel-wise accuracy may not necessarily have high image-wise 
accuracy, and vice versa. For example, a model with high pixel-wise accuracy can still err when 
classifying an entire image, if it has misclassified many pixels in the image. Similarly, a model 
with high image-wise accuracy may still have low pixel-wise accuracy if it has erred in 
classifying individual pixels in the image. 

For this application, the research team focused on image-wise accuracy instead of pixel-wise 
accuracy. As the objective was to identify instances of FOD in an image, the presence of any 
identified FOD pixels in an image would be sufficient to notify an operator to look at that image 
and/or location on the runway. 

4.  INITIAL TESTING: CAPE MAY AIRPORT 

Because of its proximity to the FAA William J. Hughes Technical Center, WWD was chosen as 
the initial test site for sUAS-based FOD detection. WWD presents a diverse array of pavement 
materials, paint markings, and pavement distress, making it an ideal location for gathering a 
comprehensive dataset to train deep learning algorithms. Moreover, the airport’s low traffic 
density and uncontrolled airspace, in compliance with Title 14 Code of Federal Regulations, Part 
107, Small Unmanned Aircraft Systems (14 CFR Part 107), make it an optimal location for 
conducting sUAS operations. It is important to highlight that ATR holds a Memorandum of 
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Agreement with the DRBA, which enables airport safety and pavement research to be performed 
at WWD and further emphasizes WWD’s suitability for conducting sUAS-based FOD detection 
testing. 
 
4.1  SMALL-SCALE TESTING 

For the small-scale testing, imagery of “clean” (FOD-free) training data was collected from test 
areas to train reconstruction-based and feature-extraction/comparison deep learning algorithms. 
Once trained, these algorithms were tested against standard FOD objects to assess detection 
performance under various flight parameters and pavement types.  
 
4.1.1  Algorithm Training Requirements 

The research team’s approach for deep learning-based anomaly detection made use of a feature 
extraction-based algorithm called FastFlow, described in Section 3.3.2. The FastFlow algorithm 
first decomposes an input image into a set of “features” that are learned during the training 
process. The training datasets containing only “clean” images without FOD or other anomalies 
are encoded into a database of coordinates in a feature space. During inference, the features of 
new images are compared to the database of “clean” image features, and anomalies are 
determined based on their distance from the “clean” features. 
 
Images consist of cropped image segments, known as “blocks,” that are extracted from a single 
source image collected via the sUAS. Depending on the input needs of the neural network being 
trained, these blocks can be produced in different sizes, such as 256x256 or 512x512 pixels. 
Using a 24-megapixel camera, such as the Zenmuse X7, the sUAS can capture approximately 
500 to 750 source images from a single data collection that can be used to generate 15,000 to 
20,000 image blocks, which can then be used to train AI/ML algorithms. 
 
For the algorithm to perform successfully, the training dataset must offer: 

• An extensive variety of images with diverse appearances 
• Different surface materials, such as asphalt and concrete  
• A range of different painted markings  
• Images captured at different times of day  

 
4.1.2  Test Areas 

The research team selected three test areas at WWD, with an emphasis on operational safety and 
parameters, such as material type and paint color. The sUAS performed flights parallel to the 
length of the operating area, like a runway, in the scoped operating areas. These test areas also 
met the algorithm training requirements discussed above. 

The data collection was designed to comply with the 14 CFR Part 107 regulations. The training 
imagery limits were intended to collect a vast diversity of airport surface imagery to build a 
library of training data for the deep learning networks. The test imagery limits were smaller than 
the training imagery limits to allow for more efficient field data collection times and to better 
account for FOD items placed on the airfield. 
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4.1.2.1  Test Area 1 

Test Area 1, identified as “Taxiway,” is an asphalt taxiway located on the FAA ATR research 
Taxiway C at WWD. This operating area is approximately 1,100 ft long by 100 ft wide, 
containing an asphalt runway with yellow markings. This test area is illustrated in Figure 11. 
 

 

Figure 11. Initial Testing—Test Area 1 

4.1.2.2  Test Area 2 

Test Area 2, identified as “Runway,” encompasses the western (approach) end of Runway 10. 
This section of the runway is approximately 500 ft long by 150 ft wide and consists of asphalt 
pavement with various white runway paint markings and rubber buildup. This test area is 
illustrated in Figure 12.  
 

 

Figure 12. Initial Testing—Test Area 2 
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4.1.2.3  Test Area 3 

Test Area 3, identified as “Fixed-Based Operator (FBO) RAMP”, is a ramp area on the 
southwestern portion of WWD consisting of asphalt and concrete pavement. The test area is 
approximately 720 ft long by 180 ft wide, with aircraft tie downs and paint markings of yellow 
and black color. This test area is illustrated in Figure 13. 
 

 

Figure 13. Initial Testing—Test Area 3 

4.1.3  FOD Selection 

This section discusses the selection of FOD items for initial testing and their placement within 
the selected test areas. 
 
4.1.3.1  FOD Items 

The research team chose uniform standardized items and an additional test item from FAA AC 
150/5220-24 to act as a primary control FOD target for the initial testing, as outlined in Section 
3.4 of this report. The set of three standardized items, connected by a string, provided a 
consistent shape but with a color difference to evaluate the detection of object color contrasts in 
different situations; the control target, in this case a standard wrench, provided a larger object 
that served to evaluate the detection of objects with a different shape. 
 
Table 5 summarizes the type and number of FOD items that were placed on the test areas.  
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Table 5. Type and Number of FOD Items 

Type of FOD Number of FOD Items 
Golf Ball (White) 34 
Golf Ball (Gray) 34 
Golf Ball (Black) 34 
Wrench 6 
Total 108 

Item Totals by Test Area 
Runway 41 
Taxiway 41 
FBO Ramp 26 

4.1.3.2  FOD Placement 

Prior to data collection, the research team surveyed primary characteristics of the test areas such 
as pavement type, condition, and markings, also making note of features such as elevated/flush 
lights and rubber buildup. The research team placed test items in such a way that a FOD target 
would be within proximity to one or more of the various characteristics or features within each 
test areas. Ample spacing between FOD targets was done to prevent overlap between different 
targets. Each item placed consisted of either one wrench or a string of three golf balls. 
Additionally, to mitigate the risk of FOD being left on the airfield, the research team utilized the 
inventory and storage solution as previously discussed in Section 3.5 of this report. 
 
Test Area 1 contained 15 locations where FOD was placed, Test Area 2 contained 15 FOD items, 
and Test Area 3 contained 10 FOD items, as shown in Figures 14 15., and 16, respectively. 
 

 

Figure 14. Initial Testing FOD Placement—Test Area 1 
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Figure 15. Initial Testing FOD Placement—Test Area 2 

 

Figure 16. Initial Testing FOD Placement—Test Area 3 

4.1.4  sUAS Data Collection 

The research team collected RGB data with and without selected FOD items for 1 week. At each 
of the three test areas, multiple datasets were collected with controlled and uncontrolled 
variables. Controlled variables included the use of airframe, sensor, FOD items, and their 
placement location. uncontrolled variables included sun angle and the orientation of FOD items . 
During initial testing, the team chose a single airframe and sensor to eliminate any variables that 
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could occur due to system variances. Therefore, the DJI M210 RTK v2 with a Zenmuse X7 (50 
mm focal length) was selected.  

4.1.4.1  Flight Planning Characteristics and Parameters 

The research team collected imagery data using an industry standard sUAS at a GSD of 
approximately 0.4 cm for initial testing. The goal of this testing was to collect data with and 
without FOD. The data without FOD was intended to train the AI/ML algorithms, while the data 
with FOD was intended to assess the algorithms’ performance at detecting FOD as anomalies. 
During initial testing, variables such as the airframe, sensor, and detection items were controlled 
to allow for parameters such as surface type, sun angle, and image capture angle to be 
systematically tested. 
 
Imagery was collected in two different orientations: nadir and oblique. Nadir orientation refers to 
imagery that is captured while looking perpendicular to the ground. Oblique orientation covers a 
wide range of possible capture parameters including all camera angles not perpendicular to the 
ground. Both the camera’s angle relative to the ground as well as the camera’s angle relative to 
the aircraft’s flight path are variable. These variables require the test to strike a balance between 
operational efficiency, GSD consistency, and safety.  
 
Oblique imagery was collected with the sensor aimed at 22.5 degrees below parallel (a 67.5-
degree angle above nadir) and rotated 90 degrees perpendicular to the flight path, because it 
offered the best balance between consistent GSD across the imagery and the theorized benefits of 
oblique imagery. The aircraft was programmed to fly with a lateral offset from the runway 
centerline as required by calculation of an image center GSD of approximately 0.4 cm. Figure 17 
illustrates example images of various oblique angles. Table 6 summarizes the flight parameters 
implemented during small-scale initial testing. 

 

 

Figure 17. Illustration of 20-, 30-, and 45-Degree Oblique Angles, Respectively 
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Table 6. Flight Parameters – Initial Testing 

Flight Parameters 
Mission Planning Software DJI GS Pro 
Data Format DNG 
sUAS Orientation Nadir and Oblique 
Overlap 15/15 

 
4.1.4.2  sUAS Data Collection Workflow 

The research team developed and implemented the testing workflow shown in Figure 18. 
 

 

Figure 18. sUAS Data Collection Workflow 

4.1.5  Data Processing 

This section discusses the data processing techniques using the two deep learning methodologies 
discussed earlier in Section 3.3 of this report. 
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4.1.5.1  Algorithm Training 

The methodology for the algorithm training process is outlined in Section 3.6, wherein the data 
captured by the sUAS was first labeled and then used for training the networks. The network 
training involved splitting the large raw imagery into many smaller image “blocks” that would 
pass through the algorithm repeatedly until no further training would yield improvement in the 
algorithm’s parameters.  
 
During the initial evaluation stage, the team was unable to get the open-source OCR-GAN 
downloaded code repository working properly. When tested on the runway data, the OCR-GAN 
algorithm appeared to reproduce anomalous portions of the images as well as the non-FOD 
sections. This behavior was unexpected given the results detailed in the published literature, and 
the research team identified that the acquired dataset was significantly different from the one it 
was designed for. Due to time and resource limitations, the decision was made to abandon the 
use of OCR-GAN. Therefore, all training was performed using the FastFlow algorithm only.  
 
4.1.6  Data Analysis 

A set of example outputs from the FastFlow algorithm are shown in Figure 19 below. Column 1 
is the RGB crop. Column 2 shows the manually created ground truth labels. Column 3 shows a 
probability heatmap for all pixels in the image overlayed on the original image (brighter 
corresponds to higher likelihood). Column 4 shows the predicted pixels whose confidence in the 
heatmap were above the determined threshold. Column 5 shows small clusters on the original 
image from the predicted pixels. 
 

 

Figure 19. Example Outputs from the FastFlow Algorithm 
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FAA AC 150/5220-24 requires a positive detection rate of 90% for FOD detection equipment. 
Throughout the small-scale testing, the research team used a lower confidence threshold of 60%, 
which is an industry standard, to calculate the initial testing datasets. This does not reflect a true 
positive rate of 60%; rather, it is an indication that the algorithm is 60% confident that an 
anomaly is present, so those pixels and images are labeled as anomalous. The small-scale testing 
results provided baseline parameters that could then be refined to the point where the algorithm 
would meet the FAA AC 150/5220-24 requirement. 

Quantitative results for the oblique and nadir datasets were reported in the form of ROC curves. 
ROC curves summarize the performance of the algorithm in terms of true positive rate to false 
positive rate. The AUC value indicates the performance results, where a high AUC value 
represents good performance, and a low AUC value is poor performance. ROC curves for both 
pixel-wise and image-wise accuracy were calculated. 

Figure 20 shows the image-wise ROC curve on the left image and pixel-wise ROC curve on the 
right image for the nadir dataset. 
 

 

Figure 20. Image-Wise (Left) vs Pixel-Wise (Right) ROC Curve, Nadir 

Figure 21 shows the image-wise ROC curve on the left image and pixel-wise ROC curve on the 
right image for the oblique dataset. 
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Figure 21. Image-Wise (Left) vs Pixel-Wise (Right) ROC Curve, Oblique 

Additionally, the AUCs were calculated for each ROC and are shown in Table 7. 

Table 7. Values of AUC 

ROC AUC Value 
Nadir Image-Wise ROC 0.90 
Nadir Pixel-Wise ROC 0.99 
Oblique Image-Wise ROC 0.86 
Oblique Pixel-Wise ROC 0.97 

 
A detailed evaluation was completed to see how FastFlow performed with each FOD type on 
various backgrounds. These metrics were manually recorded by tabulating the details of each 
FOD image. 

• For wrenches, an image was counted if greater than 50% of the wrench was in the image.  

• FOD was counted as found if even a single pixel in the FastFlow output overlapped with 
the ground truth.  

• False positives were counted if no pixel in the FastFlow output overlapped the ground 
truth FOD.  

The results of FOD detection are shown in Table 8.  



 

26 

Table 8. Statistics for FOD Detection 

Oblique 
White Balls 242 Find, 24 Miss 
Gray Balls 227 Find, 36 Miss 
Black Balls 187 Find, 77 Miss 
Wrench 25 Find, 21 Miss 

Nadir 
White Balls 155 Find, 12 Miss 
Gray Balls 151 Find, 19 Miss 
Black Balls 117 Find, 37 Miss 
Wrench 26 Find, 1 Miss 

 
The oblique images were analyzed based on where the crop appeared in the image. FOD items 
closer to the camera appeared larger than items that were further from the camera. A test was 
performed to determine if the range from the camera significantly affected the results. The crops 
were split into two categories based on whether they were from the front or back half of the 
image. Figure 22 shows the ratio of Find vs Miss, where a value of 0 means no misses, and a 
value above 1 means more FOD was missed than found.  

 

Figure 22. Ratio of Found FOD vs Missed FOD by Location in Oblique Image 

As seen in Figure 22, the distance of the FOD from the camera played a significant role in the 
detection rate from oblique imagery. FOD located toward the front of the image are detected; 
however, FOD located toward the back of an oblique image are likely to be missed. 
 
The effect of the background on which a piece of FOD appears was also analyzed. The results 
were organized based on the backdrop of each piece of FOD and were graphed as a ratio of hits 
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vs misses. The results from the oblique and nadir data can be seen in Figures 23 and 24, 
respectively.  
 

 

Figure 23. Results from Oblique Dataset 

 
 

Figure 24. Results from Nadir Dataset 

Figures 23 and 24 indicate that black pavement was the best backdrop against which FOD can be 
detected, while white paint was the worst.  
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False positives from each backdrop type were also included in this analysis, as shown in Table 9.  

Table 9. False Positives by Picture Count 

Oblique False Positives by 
Picture Count 

Black Pavement 10 of 36 
Gray Pavement 117 of 293 
White Paint 41 of 58 
Yellow Paint 26 of 51 

Nadir  
Black Pavement 7 of 23 
Gray Pavement 56 of 237 
White Paint 32 of 35 
Yellow Paint 28 of 47 

 
Table 9 indicates that the white paint (in Test Area 2), which was mostly chipped, produced a 
significant number of false positives. 

4.1.7  Small-Scale Test Findings 

Key takeaways from the analysis during small-scale testing were as follows: 

• Multiple FOD test items inside a single cropped image block could lead to uncertainty in 
the performance of the ML algorithm.  

• Results were significantly worse on paint than on pavement. 

• White paint in worn condition had a high false positive rate. 

• Results were worse on gray pavement than on black pavement. 

• Oblique results were worse for the crops that were further from the camera, indicating 
that the distance to the camera is significant. 

• The research team found that grass growing through cracks in the pavement impacted 
algorithm performance, in addition to different pavement types and markings producing 
false positives. Grass growth in pavement cracks was often the source of false positives 
and could not be easily filtered out by Global Positioning System (GPS) geofencing in 
the way that grass growing along the edges of the runway could be. Grass was minimized 
in the training dataset as the goal was to assess FOD detection on the runway surface 
instead of the grass surface. 
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4.2  CALIBRATION TESTING 

The purpose of the Calibration Testing stage was to implement the lessons learned from the 
small-scale testing with revised test parameters for greater FOD detection accuracy. Coupling the 
use of both oblique and nadir orientation on a sUAS, test environments were used to capture data 
with and without FOD. The data without FOD was used to continue to build a library that helped 
train the AI/ML algorithms, while the data with FOD was used to assess the algorithms’ 
performance.  

The small-scale testing highlighted several areas in need of improvement with regard to data 
collection and analysis. Data collection improvements to be addressed included increasing sUAS 
data collection GSD. Assessment of FastFlow performance in the small-scale testing noted areas 
needing improvement, such as changing the test parameters. The changes would create new 
levels of accuracy in the test environment, ensuring FOD items can be surveyed and captured in 
a manner that provided the algorithms with absolute positive detection results.  

4.2.1  Algorithm Training Requirements 

Based on the performance and lessons learned from the initial dataset, the FastFlow algorithm 
was used again for the tests using the calibration dataset. As with the initial dataset collection, 
FastFlow was trained using a set of “clean” images that did not contain any FOD. During testing, 
images that contained FOD as well as images that were clear of FOD were shown to the trained 
network. The calibration dataset included additional categories of FOD in addition to the types 
used for the initial data collection. 

4.2.2  Test Location 

The research team continued the testing efforts at WWD for the calibration stage. The calibration 
testing included three test areas, with an emphasis on the following factors:  
 

• Paint coloring amount  
• Minimization of grass in imagery  
• Higher resolution (decreased GSD) samples  
• An increase in FOD variety 

The flight areas were designed to accommodate high-level requirements for the training data 
established by the AI/ML subject matter expert (SME). The imagery was collected with an sUAS 
in compliance with the 14 CFR Part 107 regulations. The FOD item placements were focused on 
or around pavement markings, structures, and cracks to meet calibration testing goals.  
 
4.2.2.1  Test Area 1 

Test Area 1, identified as “Taxiway,” is an asphalt taxiway located on the FAA ATR research 
Taxiway C at WWD. This operating area is approximately 1,100 ft long by 100 ft wide and 
includes asphalt pavement with yellow markings. Figure 25 illustrates this test area. 
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Figure 25. Calibration Testing—Test Area 1 

4.2.2.2  Test Area 2 

Test Area 2, identified as “Runway,” includes the western (approach) end of Runway 10. This 
section of the runway is approximately 500 ft long by 150 ft wide and consists of asphalt with 
various white runway paint markings and rubber buildup. Figure 26 illustrates this test area. 
 

 

Figure 26. Calibration Testing—Test Area 2 

4.2.2.3  Test Area 3 

Test Area 3, identified as “FBO Ramp,” is a ramp area on the southwestern portion of WWD 
consisting of asphalt and concrete. The flight area is approximately 720 ft long by 180 ft wide 
with aircraft tie-downs and yellow and black paint markings. Figure 27 illustrates this test area. 
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Figure 27. Calibration Testing—Test Area 3 

4.2.3  FOD Selection 

This section discusses the selection of FOD items for calibration testing and their placement 
within the selected test areas. 
 
4.2.3.1  FOD Items 

During the calibration test stage, the research team used test items similar to those implemented 
in the small-scale test stage and introduced new items for detection. However, during this stage, 
the  golf ball string arrays were replaced with individual golf balls.  
 
As learned during the small-scale test stage, multiple FOD items inside a single cropped image 
block could lead to uncertainty in the performance of the ML algorithm. To eliminate this 
uncertainty, the golf ball strings were disassembled, and a layout was designed that prevented 
any two test items from being present in the same image block.  
 
Additional common FOD items, as defined in FAA AC 150/5220-24, were included as part of 
this testing. These additional items included nuts, bolts, fuel caps, and painted crescent wrenches. 
Adding these items gave the FastFlow algorithm increased opportunities to identify items of 
various shapes, sizes, and colors. 
 
Table 10 summarizes the type and number of FOD items that were placed during testing. 
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Table 10. Type and Number of FOD Items 

Type of FOD Number of FOD Items 
Golf Ball (White) 4 
Golf Ball (Gray) 3 
Golf Ball (Black) 12 
Wrench 12 
Nuts & Bolts 6 
Sockets 6 
Scrap Metal 6 
Metal Pipe 6 
Total 55 

Item Totals by Test Area 
Runway 16 
Taxiway 19 
FBO Ramp 20 

 
4.2.3.2  FOD Placement 

Prior to the field effort, the research team designed a layout prioritizing the placement of test 
items on or near pavement markings, features such as lights and pavement cracks, with sufficient 
spacing between each item to ensure no test item appeared in more than a single image. Each 
item consisted of one of the types of FOD listed in Table 10 above. Additionally, to mitigate the 
risk of FOD being left on the airfield, the research team used the inventory and storage solution 
discussed in Section 3.5 of this report. 
 
Test Area 1contained 19 FOD items, Test Area 2, contained 16 FOD items, and Test Area 
3contained 20 FOD items, as shown in Figures 28, 29, and 30, respectively. 
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Figure 28. Calibration Testing FOD Placement—Test Area 1 

 



 

34 

 

Figure 29. Calibration Testing FOD Placement—Test Area 2 

 

 

Figure 30. Calibration Testing FOD Placement—Test Area 3 
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4.2.4  sUAS Data Collection 

The research team chose at this stage to switch solely to the DJI M300 RTK and the Zenmuse P1 
sensor for continued calibration testing. Imagery was collected with and without selected FOD 
items for 1 week. At each of the three test areas, multiple datasets were collected with controlled 
and uncontrolled variables. Controlled variables included the airframe, sensor, pavement 
materials, and FOD items. Other variables, such as GSD and orientation of FOD items, varied. 
 
With the lessons learned from the small-scale test stage, calibration testing focused on specific 
pavement aspects. To improve labeling efficiency, a flight plan was developed in which each 
FOD test item would be centered in its image. The flight plans contained the same number of 
images as there are FOD present per flight area. The flights were flown in a point-to-point 
waypoint format to capture the images and align the FOD items to be as centered as possible.  
 
4.2.4.1  Flight Planning Characteristics and Parameters 

The research team collected imagery in two different orientations: nadir and oblique. Oblique 
imagery was collected with the sensor at 22.5 degrees below parallel (a 67.5-degree angle above 
nadir) and rotated 90 degrees perpendicular to the flight path. The aircraft was programmed to 
fly with a lateral offset from the runway centerline as required by calculation of an image center 
GSD of approximately 0.4 cm. Figure 31 shows computer-aided design (CAD) drawings of data 
collection angles. 
 

 

Figure 31. Data Collection Angles—CAD Drawing 

In small-scale testing, only one type of nadir flight was conducted as part of determining a start 
point of the research effort. For calibration testing, two types of nadir flight collections were 
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conducted to assist in refining the path taken for future testing. The only difference between the 
flights of nadir high and nadir low were the altitude at which the data collection was conducted, 
with nadir high denoting the flight at 0.4 cm GSD and nadir low denoting a flight GSD of 0.2 
cm. Nadir high had the same flight planning parameters as small-scale testing, while nadir low 
had the new lower flight altitude and improved GSD. 
 
Table 11 summarizes the flight parameters for calibration testing. 

Table 11. Flight Parameters—Calibration Testing 

Flight Parameters 
Mission Planning Software DJI Pilot 2 
Data Format RAW 
sUAS Orientation Nadir and Oblique 
Overlap N/A 

 
4.2.4.2  sUAS Data Collection Workflow 

The research team utilized the sUAS data collection workflow summarized in Section 3.6.  
 
4.2.5  Data Processing 

The data from the calibration collection effort was processed in the same manner as the initial 
collection effort but with two additional modifications. The first modification was to augment the 
dataset with additional sub-images that were created by rotating and/or mirroring the pixels. 
Image rotation cannot always be performed in datasets as, for example, an upside-down 
landscape would never be encountered by the algorithm during testing. The team experimented 
to determine how much augmentation with rotated images would benefit the algorithm’s 
performance. In addition, where possible, both vertical and horizontal mirroring was performed 
to augment the final dataset. 
 
The second modification was the choice to use two independent datasets, one of which went 
through a process of additional SD filtering. The SD filter curated the dataset to have a higher 
concentration of images with paint, cracks, and generally interesting features, while reducing the 
amount of “uninteresting” uniform pavement. The SD filter datasets were used to see what 
impact such a filter would have on the number of false positives. 
 
4.2.6  Data Analysis 

Quantitative results for each dataset were measured in the same manner, generating ROC curves 
and calculating AUCs. Throughout the small-scale testing, the research team used a confidence 
threshold of 60% to determine the baseline parameters of future testing. As part of the move to 
calibration testing, the confidence threshold was increased to 90%, and all the statistics in this 
section reflect that more stringent confidence level. 
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Figure 32 shows an example output of the SD filter applied to the imagery. The top row is the 
SD-filtered imagery, and the bottom row is imagery processed without the SD filter being 
applied to imagery. 

 

Figure 32. Example Output with SD Filter 

Figure 33 shows the pixel-wise ROC curves for the nadir high dataset. The left image is for all 
crops and the right image is for the SD-filtered crops.  
 

 

Figure 33. Pixel-Wise ROC, Nadir High 

Figure 34 shows the pixel-wise ROC curves for the nadir low dataset. The left image is for all 
crops and the right image is for the SD-filtered crops. 
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Figure 34. Pixel-Wise ROC, Nadir Low 

Figure 35 shows the pixel-wise ROC curves for the oblique dataset. The left image is for all 
crops and the right image is for the SD-filtered crops. 
 

 

Figure 35. Pixel-Wise ROC, Oblique 

Figure 36 shows the image-wise ROC curves for the nadir high dataset. The left image is for all 
crops and the right image is for the SD-filtered crops. 
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Figure 36. Image-Wise ROC, Nadir High 

Figure 37 shows the image-wise ROC curves for the nadir low dataset. The left image is for all 
crops and the right image is for the SD-filtered crops. 
 

 

Figure 37. Image-Wise ROC, Nadir Low 

Figure 38 shows the image-wise ROC curves for the oblique dataset. The left image is for all 
crops and the right image is for the SD-filtered crops. 
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Figure 38. Image-Wise ROC, Oblique 

Table 12 summarizes all AUCs for the datasets with the best result noted in green.  

Table 12. Values of AUC 

 Image AUC Pixel AUC 
Nadir High—All 0.89 0.99 
Nadir Low—All 0.92 0.98 
Oblique—All 0.87 0.98 
Nadir High—SD filtered 0.88 0.99 
Nadir Low—SD filtered 0.92 0.99 
Oblique—SD filtered 0.82 0.97 

 
Nadir Low—SD filtered had the best image and pixel AUCs with 706 false positives per image. 

Table 13 presents the Nadir Low—SD filtered analysis results in relation to target identification. 

Table 13. Calibration Testing Results 

Dataset 

90% 
Confidence 
Threshold 

False 
Positive 

Crops Per 
Image 

True 
Positives 

False 
Negative 

True 
Negatives 

Total 
FOD 

FOD 
Found 

FOD 
Missed 

Nadir Low—
SD filtered 0.709 706 536 56 247 55 51 4 

 
4.2.7  Calibration Testing Findings 

The lessons learned include difficulties in identifying FOD with oblique imagery, and a higher 
margin of error in FOD detection at the 0.4-cm GSD. Recognizing these challenges, the research 
team decided not to collect oblique imagery for the full-scale test stage. Additional routes to 
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research oblique orientation imagery are present; however, budget constraints and insufficient 
sensor quality options warrant a recommendation for future testing. 

Finally, it was noted that FastFlow did not display additional challenges with the new FOD types 
added in this data collection effort. The recommendation from these results was to pursue 
capturing nadir images at low altitude and to continue the SD filtering preprocessing step 
implementation to train and test the FastFlow network. 

4.3  FULL-SCALE TESTING 

The full-scale test stage implemented lessons learned during initial and calibration testing and 
provided the AI/ML algorithms with a full-scale dataset. The research team collected imagery 
over the entire test area runway, implementing standard items and an array of common FOD 
items listed in AC 150/5220-24. This testing refined test parameters and accounted for real-world 
scenarios, such as larger test areas and a suite of actual FOD items. This dataset provided a 
comprehensive collection of FOD items and images with paint, cracks, and other pavement 
markings, all captured at a GSD of 0.2 cm in nadir orientation.  

4.3.1  Algorithm Requirements 

In addition to implementing lessons learned, this effort evaluated FastFlow’s FOD detection 
capability in a full-scale data collection effort. 

4.3.2  Test Area 

Full-scale testing consisted of one test area at WWD as requested by the FAA, with an emphasis 
on the following factors:  

• Paint coloring amount  
• Minimization of grass in imagery  
• Higher resolution (decreased GSD) samples  
• An increase in FOD variety 

The imagery was collected with an sUAS in compliance with the 14 CFR Part 107 regulations 
carrying a RGB sensor. The FOD item positions were focused on or around pavement markings, 
structures, and cracks to meet full-scale test goals. The sUAS followed a preprogrammed path to 
ensure that the collected imagery captured all FOD items placed with approximately 25 ft 
between items. 

4.3.2.1  Test Area 

The test area identified as “Runway” was the full runway of 10/28 at WWD, illustrated in 
Figure 39. This runway is approximately 5,000 ft long by 150 ft wide and consists of a mix of 
freshly rehabilitated and older asphalt with various white runway paint markings and rubber 
buildup. 
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Figure 39. Full-Scale Testing—Test Area 

4.3.3  FOD Selection 

This section discusses the selection of FOD items for full-scale testing and their placement 
within the selected test areas. 

4.3.3.1  FOD Items 

The research team chose the standardized items used in the prior initial and calibration testing in 
addition to the test items laid out in AC 150/5220-24. Several additional FOD items from 
AC 15/5220-24 were added into the full-scale test stage, including PVC pipe, hydraulic hose, gas 
cap, tire rubber, taxi light, and asphalt chunk. Additionally, to mitigate the risk of FOD being left 
on the airfield, the research team utilized the inventory and storage solution as discussed in 
Section 3.5 of this report. 

Table 14 summarizes the type and number of FOD items that were placed during testing. 
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Table 14. Type and Number of FOD Items 

Type of FOD 
Number of 
FOD Items 

Golf Ball (White) 5 
Golf Ball (Gray) 4 
Golf Ball (Black) 4 
Wrench 7 
Nuts & Bolts 3 
Sockets 3 
Scrap Metal 3 
Metal Pipe 3 
PVC Pipe 3 
Hydraulic Hoses 3 
Gas Caps 3 
Tire Rubber 3 
Taxi Lights 3 
Asphalt Chunks 3 
Total 50 

Item Totals by Test Area 
Runway 50 

4.3.3.2  FOD Placement 

Prior to the field effort, the research team designed a layout prioritizing the placement of test 
items on or near pavement markings, features such as lights, and pavement cracks, with 
sufficient space between each item to ensure no test item overlaps. The flight area, as shown in 
Figure 40, had two FOD zones: Runway 10 End (FOD items 1–25) and Runway 28 End (FOD 
items 26–50), with a size of 100 ft x 100 ft and 25 items laid out on each in a grid format. 

 

Figure 40. Full-Scale Testing—Test Zones 
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Each area consisted of at least one of the following: a golf ball colored white, gray, or black; fuel 
caps; hydraulic hoses; taxi lights; wrenches; PVC pipes; rubber scraps; sockets; nuts and bolts; 
asphalt chunks; metal pipes; and metal scraps. The FOD placement in the testing zone is shown 
in Figures 41 and 42. 

 

Figure 41. Full-Scale Testing FOD Placement—Runway 10 End 

 

Figure 42. Full-Scale Testing FOD Placement—Runway 28 End 



 

45 

4.3.4  sUAS Data Collection 

The research team collected RGB data with FOD test items for 1 week. Two datasets were 
collected with variables such as pavement material, item type, and the presence or lack of test 
items. Additionally, the DJI M300 RTK and P1 sensor were chosen for the full-scale testing. The 
continued implementation of the DJI M300 and P1 during full-scale testing was due to its 
performance during calibration testing. 

The use of ground control points during data collection was not necessary; however, to analyze 
detection accuracy, the team surveyed the locations of test items placed within the test area. To 
meet the full-scale testing objectives, images of the FOD were collected in a traditional 
“lawnmower” pattern. With no requirement to produce an orthophoto, overlap requirements 
remained low. The research team used a forward overlap of 10% and side overlap of 15% to 
ensure the complete collection of the flight area. The set overlap fulfilled collection requirements 
while minimizing flight time and excess data. 

4.3.4.1  sUAS Data Collection Workflow 

The research team used the sUAS data collection workflow identified during small-scale testing 
in Section 4.2.4. 

4.3.4.2  Flight Planning Characteristics and Parameters 

Nadir imagery was collected in the most efficient format, with the aircraft flying parallel to the 
center line of the runway and the widest portion of the sensor positioned perpendicular to the 
center line. The data output from this sUAS data collection effort was standalone imagery rather 
than an orthomosaic output. 

Table 15 summarizes the flight parameters for full-scale testing. 

Table 15. Flight Parameters—Full-Scale Testing 

Flight Parameters 
Mission Planning Software DJI Pilot 2 

Data Format RAW 
sUAS Orientation Nadir 

Overlap 10/15 

4.3.5  Data Processing 

Data processing for the full-scale dataset followed nearly the same protocol as the processing for 
the calibration data. However, since this collection was only for the test data, the data used for 
training was the Nadir Low – SD Filtered set from the calibration dataset. This was chosen since 
it had the best AUC numbers for both FOD images and FOD pixels when tested with the 
calibration imagery. The method for generating image crops from the raw imagery was different 
than with the previous tests. Because the data collected in the full-scale set was mainly focused 
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on testing and not training, a cropping method was selected that ensured each piece of FOD 
would appear towards the center of at least one crop.  

In the previous datasets, FOD was sometimes missed if it was only found on the edge of an 
image as shown in Figure 43. In the left image, a small portion of a piece of FOD is highlighted 
by a red circle. The middle image shows the ground truth label for that FOD in the image. The 
right image shows the output of Fastflow where that piece of FOD was missed and included a 
false positive at the lower right. 

 

Figure 43. Example Image Crop Where Only a Small Portion of FOD is Visible 

For this purpose, the 256 x 256-pixel crops were simply offset by 128 pixels in an evenly 
distributed grid as shown in Figure 44. After all the crops were generated, a final row and 
column of crops was taken to capture the final pixels at the edges of the image. This ended up 
producing about 300 image crops that contained FOD and 3.29 million crops which did not. Due 
to memory constraints, the non-FOD imagery was randomly subsampled to reduce the number of 
crops, bringing the total count closer to the number of FOD images. This resulted in a total of 
329 non-FOD crops being processed through the FastFlow setup. 

 

Figure 44. Visualization of Test Cropping Method 
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4.3.6  Results and Analysis 

Quantitative results for full-scale testing showed similar values to other tests when training on 
the calibration testing Nadir Low – SD Filtered dataset and testing on the images from the new 
data collection.  

ROC Curves are shown in Figure 45. The left image is pixel-wise ROC with an AUC of 0.98, 
and the right image is image-wise ROC with an AUC of 0.90. 

 

Figure 45. Pixel-Wise vs Image-Wise ROC 

To generate scores for this dataset, the crop where the FOD was most centered was chosen to be 
the only one that would be scored. As with the other data collection efforts, a true positive was 
indicated if even a single pixel overlapped with the FOD. Additionally, the team analyzed this 
dataset at the 60% confidence threshold, and at the 90% confidence threshold required by AC 
150/5220-24 in order to compare the differences.  

In the case of the 60% confidence threshold, the true positive results for full-scale testing showed 
five missed pieces of FOD over the 53 pieces that were captured in the imagery. The three extra 
pieces of FOD were from FOD that were in more than one picture. All five of these missed FOD 
were in difficult situations:  

• Two were asphalt chunks that were the same color as the asphalt they were sitting on.  
• Two were a black gas cap and a black golf ball on black pavement. 
• One was a rubber strip that looked like the tar used to repair cracks, which FastFlow 

learned not to be counted as anomalous.  

There were also a significant number of false positives throughout the imagery. On plain 
pavement images there were often scatterings of small clumps of pixels that surpassed the 
confidence threshold to be counted as anomalous. Additionally, as seen in previous tasks, false 
positives occurred primarily in images that contained cracks, paint, and grass. Examples can be 
seen in Figures 46–50. 
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Figure 46. True Positives 

 

Figure 47. True Positives with False Positives 

 

Figure 48. False Positives 
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Figure 49. False Negatives 

 

Figure 50. True Negatives 

In the case of the 90% confidence threshold, the true positive results for full-scale testing showed 
a miss of one FOD target out of the 53. The missed FOD happened to be the small V-shaped 
scrap metal target. This marks a notable difference between the 60% and 90% thresholds in what 
is more difficult to detect target wise, with 60% being color contrast and 90% being object size. 
This dataset also had a total of 1,737 false positive crops per image, where false positives 
appeared around paint, markings, and cracks.  

4.3.7  Full-Scale Test Findings 

The lessons learned include the viability and successful FOD detection with AI/ML of all types 
of FOD outlined in AC 150/5220-24. It also presented challenge areas for the AI/ML algorithms 
in the positive identification of FOD items that were of small sizes or closely matched the visual 
appearance of the pavement surface they were placed on. The items of specific difficulty 
included nuts and bolts, sockets, asphalt chunks, and rubber strips that matched the pavement 
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surface color. Paths to increase positive identification of challenging FOD items are outlined in 
Section 7. 

Finally, it was noted that FastFlow had a high number of false positives focused on certain visual 
features, such as chipped paint, cracks, or tar patches. The high false positive rate is believed to 
be directly linked to an inadequate number of training images containing such features. 

4.4  INITIAL TESTING SUMMARY 

The FastFlow anomaly detection algorithm, originally designed for detecting defects in 
manufactured parts, was successfully applied to the challenge of detecting FOD in runway 
images taken from an sUAS. The research team found that FOD items that differ in appearance 
from the background pavement on which they are placed were nearly always found by the 
FastFlow algorithm. In contrast, FOD items with an appearance that very closely matched the 
pavement on which they were placed were more difficult to detect and were mostly missed by 
the algorithm when using a 60% confidence threshold. The algorithm is reliant upon the 
capabilities of the sUAS’s camera to generate imagery, which can mean that over- or under-
saturated sections of images and areas of low contrast could cause the algorithm to potentially 
miss pieces of FOD. 

Another challenge revealed by the testing is the high likelihood of false positives (e.g., false 
FOD reports) being reported by the algorithm. While the FastFlow models were trained using 
images taken from the runway, certain visual features, such as chipped paint, cracks, or tar 
patches, did not appear in large quantities. As a result, the algorithm appeared not to learn that 
these features were not FOD and would still flag some of them as FOD. Thus, the default 
FastFlow algorithm still requires very careful curation of images for training, and additional 
development and testing would be required to reduce false positives while still maintaining a 
high true positive detection rate. 

Finally, the testing led to the identification of best methods for data collection. Images captured 
from a nadir vantage point had a significantly higher true positive detection rate than images 
captured from an oblique vantage point. Positive detection rate was also improved by flying the 
sUAS lower to increase the image resolution. The full-scale testing was conducted using the low-
altitude nadir flights, so the final detection results detailed in Tables 16 and 17 include both those 
results and the results from the calibration test, which was flown in the same fashion. No results 
from the initial test were included because they were all captured at a higher altitude and would 
not be comparable to the subsequent tests. 
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Table 16 summarizes the initial testing Fastflow results at WWD. 

Table 16. Initial Testing Results 

Test Stage 

90% 
Confidence 
Threshold 

False 
Positive 
Crops 

Per 
Image 

True 
Positives 

False 
Negative 

True 
Negatives 

Total 
FOD 

FOD 
Found 

FOD 
Missed 

Calibration 0.709 706 536 56 247 55 51 4 
Full-Scale 0.623 1737 272 28 113 50 49 1 
 
Table 17 summarizes the overall AC 150/5220-24 FOD target detection results of initial testing 
at WWD. The table breaks down the difference in target detections between the 60% and 90% 
confidence thresholds. 

Table 17. FOD Detection Confidence Threshold Comparison 

FOD Target 
sUAS/AI Detection Rate at 

90% Confidence 
Threshold 

sUAS/AI Detection Rate 
at 60% Confidence 

Threshold 
An unpainted metal cylinder 100% (9 of 9) 100% (9 of 9) 
A white, gray, or black sphere 100% (32 of 32)  100% (32 of 32)  
A “chunk” of asphalt or 
concrete 100% (3 of 3) 33% (1 of 3) 

Any portion of a runway light 
fixture (in-pavement or edge 
light) 

100% (3 of 3) 100% (3 of 3) 

An adjustable crescent wrench 100% (19 of 19)  100% (19 of 19)  
A deep socket 89% (8 of 9) 100% (9 of 9) 
A piece of rubber from an 
aircraft tire 100% (3 of 3) 67% (2 of 3) 

A distorted metal strip 78% (7 of 9) 100% (9 of 9) 
A fuel cap 100% (3 of 3)  67% (2 of 3)  
A lug nut 78% (7 of 9) 100% (9 of 9) 
A hydraulic line 100% (3 of 3) 100% (3 of 3) 
A white PVC pipe 100% (3 of 3) 67% (2 of 3) 
Total 95 % (100 of 105)  95 % (100 of 105)  

 
Based on the results of the initial testing at WWD, the research team implemented a Conditional 
Random Field (CRF) algorithm to reduce the number of false positives. These solutions tackled 
the false positive rate problem from the standpoint of post-processing the output and carefully 
controlling what input data are used to train the model. The CRF algorithms make use of 
reported region size, region probability, and the RGB values in the input image of the region to 
remove instances of low-probability FOD while promoting higher-probability FOD. 
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To address the FAA AC 150/5220-24 location accuracy requirements, the research team 
implemented a proof-of-concept FOD geolocation workflow and benchmarked its performance 
against surveyed positions of the placed FOD test items. 

5.  VALIDATION TESTING: ATLANTIC CITY INTERNATIONAL AIRPORT 

Validation testing at ACY was aimed at implementing lessons learned from initial testing at 
WWD. During the full-scale testing at Cape May, tests were conducted over a full runway with 
refined testing parameters to evaluate the training and learning the algorithms had undergone in a 
real-world case. Validation testing provided datasets at a new airport (ACY) to help validate the 
performance and demonstrate the ability to generalize the processes and workflows previously 
developed, which included evaluating the performance of CRF filtering methods to reduce false 
positive rates while maintaining true positive performance. Additionally, the validation testing 
sought to demonstrate the minimum viable product requirements for using sUAS and AI as a 
means of FOD detection per AC 150/5220-24. 

5.1  TEST AREAS 

ACY was chosen as the location for this sUAS-based FOD detection validation testing due to its 
close proximity to the William J. Hughes Technical Center (WJHTC). ACY offers an 
appropriate amount of diversity for testing conditions. The specific testing site at ACY was 
chosen to encompass as much runway area as possible while not interfering with normal airport 
operations taking place during the time of testing. 

The research team selected two test sections of Runway 04/22 at ACY, with an emphasis on a 
novel location and runway material while staying outside the intersecting area of Runway 13/31 
and Taxiway B, thereby minimizing impact on the airport during testing. The sUAS performed 
flights parallel to the length of the operating area. These test areas also met the algorithm training 
requirements discussed in previous sections of this report. 

The validation testing effort had two separate flight operations in these areas on Runway 04/22. 
These flights correspond to the two stages where the first stage was the collection of training data 
over the “clean” novel runway, and the second was a collection of testing data over the same 
areas with FOD present.  

The flight area identified as “RWY 04/22” was made up of two parts of Runway 04/22 and is 
shown in Figure 51. This runway is 6,144 ft long by 150 ft wide and consists of a mix of freshly 
rehabilitated and older asphalt with various white runway paint markings and rubber buildup. 
There is an additional 75-ft buffer space to the pavement as defined by the required airspace 
authorization. 
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Figure 51. Test Areas at ACY 

The flight area identified as “Test Area 1” is a portion of Runway 04/22 on the 04-approach side 
of the runway and is shown in Figure 52. This runway section is approximately 3,300 ft long by 
150 ft wide, with an additional buffer area of 75 ft to either side of the runway. 
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Figure 52. Test Area 1 at ACY 

The flight area identified as “Test Area 2” is a portion of Runway 04/22 on the approach side of 
Runway 22 and is shown in Figure 53. This area is approximately 2,200 ft long by 150 ft wide 
with a buffer area of 75 ft to either side of the runway. 
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Figure 53. Test Area 2 at ACY 

5.2  DATA COLLECTION 

The research team collected nadir RGB data from a DJI M300 RTK and P1 sensor with and 
without selected FOD items during the appropriate test stage. At each of the test areas, multiple 
datasets were collected with controlled and uncontrolled variables. Controlled variables included 
the use of airframe, sensor, and FOD items and their placement location, while other variables, 
such as sun angle and orientation of FOD items, are uncontrolled. 
 
The use of ground control points during data collection was not necessary; however, to analyze 
detection accuracy, the team surveyed the locations of test items placed within the test area. To 
meet the validation testing objectives, images of the FOD were collected in a traditional 
“lawnmower” pattern. With no requirement to produce an orthophoto, overlap requirements 
remained low and comparable with full-scale testing. The research team determined the use of a 
forward overlap of 10% and side overlap of 15% for the training stage to ensure ample collection 
of flight areas. The team determined a forward overlap of 10% and side overlap of 10% for the 
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test stage would meet collection requirements while minimizing flight time and excess or 
duplicate data. 
Nadir imagery was collected in the most efficient format, with the aircraft flying parallel to the 
center line of the runway and the widest portion of the sensor positioned perpendicular to the 
center line. The validation testing datasets focused on maintaining FOD objects of increased 
variety and imagery containing paint, cracks, and other pavement markings at the 0.2-cm GSD. 
Table 18 summarizes the flight plan for full-scale testing. 
 

Table 18. sUAS Flight Parameters – ACY Training & Testing Stages 

sUAS Flight Parameters 
Mission Planning Software DJI Pilot 2 

Data Format RAW 
sUAS Orientation Nadir 

Overlap (Training Stage) 10/15 
Overlap (Testing Stage) 10/10 
Ground Sample Distance 0.2 cm 

 

5.3  TRAINING DATA 

The research team collected imagery over the two test areas without FOD present in the imagery 
to provide the FastFlow algorithm a “clean” dataset to compare FOD imagery against. This 
testing effort was designed to build out the Fastflow training library of the test site by 
implementing baseline FOD-free training data at ACY. The training dataset follows a nearly 
identical structure to what was done in initial testing. The primary differences from the initial 
testing were that the dataset was collected at a 0.2-cm GSD from the start and included grass 
along the edge of the runway surface.  
 
The training dataset processing followed the same processes as the WWD full-scale testing until 
the point of running the FastFlow network. There is no significant analysis for this stage as this 
data collection was focused on presenting the FastFlow algorithm training data that could be 
compared to the testing data in the next stage. 
 
5.4  TESTING DATA 

The validation testing dataset implemented lessons learned during the WWD full-scale testing 
and provided the AI/ML algorithms with a new FOD dataset. This dataset provided a 
comprehensive collection of FOD items and images with paint, cracks, and other pavement 
markings, all captured at a GSD of 0.2 cm in nadir orientation. During validation testing, the 
research team also focused on improving the detection performance of FastFlow by 
implementing a new image post-processing workflow that incorporates CRF filtering. 
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5.4.1  FOD Selection 

This section discusses the selection of FOD items for validation testing and their placement 
within the selected test areas. 
5.4.1.1  FOD Items 

The research team decided to incorporate standardized items from previous performance 
assessments into validation testing. In addition to the standardized items, the research team 
picked an array of test items out of AC 150/5220-24.To mitigate the risk of FOD being left on 
the airfield, the research team used the inventory and storage solution discussed in Section 3.2 of 
this report. 
 
Table 19 summarizes the type and number of FOD items that were placed during testing. 
 

Table 19. Type and Number of FOD Items 

Type of FOD Number of FOD Items 
Golf Ball (White) 4 
Golf Ball (Gray) 4 
Golf Ball (Black) 4 
Wrench 8 
Nuts and Bolts 6 
Sockets 6 
Scrap Metal 6 
Metal Pipe 6 
PVC Pipe 6 
Hydraulic Hoses 6 
Gas Caps 6 
Tire Rubber 6 
Taxi Lights 6 
Asphalt Chunks 6 
Total 80 

Item Totals by Test Area 
Test Area 1 40 
Test Area 2 40 

5.4.1.2  FOD Placement 

Prior to data collection, the team surveyed primary characteristics of the test areas such as the 
pavement type, condition, markings, presence of features such as elevated/flush lights, and 
rubber buildup. The team identified notable attributes and placed test items across each attribute 
with enough space between them to prevent any overlaps. Each FOD item consisted of either a 
golf ball or an item identified in AC 150/5220-24. 
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The following figures display the defined areas where FOD was located during the validation 
testing effort. The FOD zones did not have FOD in a predefined placement orientation. Each 
zone within the two test areas contained 20 pieces of FOD, for a total of 80 FOD in the testing.  
 
Figure 54 displays the collection area limits for the training dataset and highlights that there is no 
FOD zone layout in the collection areas. The collection area limits are defined by green borders 
and measure 3,200 ft by 150 ft for Test Area 1 and 1,900 ft by 150 ft for Test Area 2. 
 

 

Figure 54. Training Stage—No FOD Placement 

Figure 55 displays the overview of the test areas and the two sets of two FOD zones in each. 
Each of the four FOD zones are 100 ft by 100 ft and contained 20 FOD items each. 
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Figure 55. Testing Stage—FOD Zones Identified 

Figure 56 provides greater perspective on FOD zone placement during the testing for Test 
Area 1. 

 

Figure 56. Test Area 1 Testing Stage—FOD Zone 
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Figure 57 provides greater perspective on FOD zone placement during the testing for Test 
Area 2. 

 

Figure 57. Test Area 2 Testing Stage—FOD Zone 

5.4.2  Data Processing 

Data processing for the ACY dataset followed nearly the same protocol as the processing for the 
full-scale dataset at WWD. The primary difference from the WWD testing was the application of 
an additional postprocessing CRF filter to the output. A CRF is a tool which has been used 
effectively to help clean up the output imagery in other applications, such as segmentation 
networks. The research team determined that it would work well to help remove small instances 
of false positive detections that appear in many of the output images. A CRF uses a combination 
of filters to improve probability maps by running the filters over both the probability map and the 
original RGB image together. The process ends with a final probability map that is skewed 
towards 0 and 1 without as many values of medium probability. The combination of the 
probability map with the RGB image results in probability maps where the edges of the 
probability are more consistent with the edges in the real image. Examples of this algorithm are 
shown in Figure 58 and Figure 59. 
 
Figure 58 displays an output of no FOD in the image. On the left is the pre-CRF raw RGB crop. 
The second image is the manually labeled ground truth. The third image is the pre-CRF output 
crop containing many false positives. On the right is the post-CRF output crop that resulted in 
zero false positives being reported. 
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Figure 58. Example of CRF on an Image Containing No FOD 

Figure 59 displays an output of a black golf ball FOD in the image. On the left is the pre-CRF 
raw RGB crop. The second image is the manually labeled ground truth crop. The third image is 
the pre-CRF output crop containing several false positives in addition to the FOD. On the right is 
the post-CRF output that resulted in only the true positive of the FOD being reported. 

 

Figure 59. Example of CRF on an Image Containing FOD 

In addition to CRF implementation, the research team investigated how two different cropping 
algorithms for generating crops from the raw imagery would impact the number of false 
positives a user would see. The first method, referred to as “training cropping,” segmented a raw 
image into a series of crops by minimizing the amount of overlap between the cropped images. 
Some overlap was to be expected because the crops were all fixed to a size of 256 pixels by 256 
pixels, and the raw imagery size could not be evenly divided by 256. The minimal amount of 
overlap was to ensure that FastFlow was presented with mostly new pixels in each crop. The 
training cropping generated about 704 crops per raw image. The second method, referred to as 
“test cropping,” segmented the raw image such that 50% of the pixels in the X and/or Y 
dimensions could be duplicated in each subsequent crop. The large amount of overlap was 
intended to minimize the instances where FOD might only be partially seen on the boundary of 
more than one crop. The test cropping generated about 2,646 crops per raw image. Figure 60 
illustrates both cropping methods on the same segment of a raw image. 
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Figure 60. Examples of the Cropping Methods—Testing (Left) and Training (Right) 

5.4.3  Results and Analysis 

Quantitative results for ACY testing showed similar values to full-scale tests when comparing 
results to the pre-CRF values. However, there is a significant reduction in the number of false 
positives reported due to CRF implementation. It should be noted that the CRF filter also slightly 
decreased the true positive rate in instances where the FOD target was poorly or barely detected 
pre-filtering.  

ROC curves are shown in Figure 61. The left image is the image-wise ROC of no-grass training, 
and the right image is the image-wise ROC of with-grass training. Their AUCs are  0.87 and 0.90 
respectively. 

 

Figure 61. No-Grass Image-Wise ROC vs With-Grass Image-Wise ROC 
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To generate scores for this dataset, the research team decided that the crop where the FOD was 
most centered would be the only one scored. As with the other data collection efforts, a true 
positive was indicated if even a single pixel overlapped with the FOD. The true positive results 
for ACY testing datasets showed two missed pieces of FOD alongside the 75 pieces that were 
captured in the sUAS imagery. The FOD that were missed were on the smallest side of both size 
and visible profiles. The missed FOD were a lug nut and V-shaped metal scrap. 

In previous tests, there was a focus on excluding grass from the data. However, the ACY test 
analysis determined that including grass in the FastFlow training proved to be beneficial for the 
algorithm. The grass inclusion had trained FastFlow to recognize the variable textures of grass 
and correlate that to some of the variable features like paint and cracks. The result was a visible 
difference in recorded false positives between the two datasets represented in Table 20. 

Table 20. Validation Testing Results from ACY 

Test 
Stage 

90% 
Threshold 

False 
Positive 

Crops per 
Image 

True 
Positives 

False 
Negatives 

True 
Negatives 

Total 
FOD 

FOD 
Found 

FOD 
Missed 

ACY – 
No 

Grass 

0.693 1,139 414 52 74 75 74 1 

ACY – 
No 

Grass 
(CRF) 

0.693 814 392 74 90 75 74 1 

ACY – 
Grass 

0.721 875 422 44 87 75 75 0 

ACY – 
Grass 
(CRF) 

0.721 447 394 72 108 75 73 2 

To further reduce the number of false positives, the team reviewed the data with different 
cropping methods. The test cropping method, which had been used predominately in initial 
testing analysis, was expected to outperform the training cropping method because the FOD 
would be completely present in at least one of the overlapping images. However, in practice, the 
training cropping algorithm had nearly half as many false positives, and the number still fell 
within the FAA’s required 90% threshold, as shown in Table 20.  

Table 21 displays the reduction of false positives and FOD detections based on cropping method. 
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Table 21. Cropping Method Comparison 

Test Cropped Detection Rate FOD Found FOD Missed False Positives 
ACY – No 
Grass (CRF) 99% 74 1 814 

ACY – 
Grass 
(CRF) 

97% 73 2 447 

Training Cropped 
ACY – No 
Grass (CRF) 92% 69 6 216 

ACY – Grass 
(CRF) 93% 70 5 119 

The advantage of the training cropping method is the reduced number of image crops that were 
required to be processed. Searching for FOD in an image segmented by the training cropping 
method resulted in nearly a 75% reduction in the number of image crops compared to the test 
cropping method. The high level of redundancy in the test cropping method would result in a 
corresponding number of false positives being repeated for a given image. These false positives 
could be reduced by projecting them back into a single raw image and then recomputing the 
number of false positives across the unified image, but that would introduce additional 
processing time. Because the training cropping method can still perform above the 90% required 
threshold, it is a viable method in FOD detection, with fewer false positives.  

5.4.4  ACY Test Findings 

During the validation testing, the sUAS hardware was found to have a technological limitation at 
low altitude and low overlaps that had gone undetected during initial testing. It was discovered 
that the sUAS was collecting imagery approximately +/- 5 ft horizontally of that ideal collection 
position. In most use cases this would not be an issue; however, in this case, the combined GSD 
and overlap values means there was approximately 4 ft of imagery overlap planned. When two 
image spacing variance errors coincided, blank spaces were left that did not appear in the 
imagery, thus resulting in entirely missed FOD. It is unclear if there was a hardware issue 
resulting in inaccurate image collection timing or if it is a latent limitation of current 
technological capabilities. In total, five FOD were missed in data collection due to this 
occurrence.  

From this testing, it was determined that 10% overlaps are insufficient to guarantee complete 
coverage. From planned overlaps, it is estimated that an overlap value of 20% forward overlap 
(i.e., 7 ft of overlap) and 15% side overlap (i.e., 8 ft of overlap) will present complete coverage 
while taking hardware limitations at high GSD into consideration for the hardware setup used in 
this research effort. 
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Both test and training cropping meet the 90% detection requirement of AC 150/5220-24; 
however, each has different areas of impact. The test cropping focuses on equal cropping 
overlap, which results in capturing a majority of FOD, but also results in more false positives per 
image. The training cropping focuses on reducing cropping overlap, which significantly reduces 
false positives at the cost of missing additional FOD. As both meet the 90% detection 
requirement, it becomes a choice between the cropping that is most effective in detecting FOD 
and the one that is more efficient for the user in sorting out false positives. 

Table 22 displays the FOD target detection breakdown for CRF with grass dataset compared to 
initial testing results.  

Table 22. Validation Testing FOD Detection Breakdown 

FOD Target 
sUAS/AI Detection 

Rate 
Initial Testing* 

sUAS/AI Detection 
Rate Validation 

Testing* 

sUAS/AI Detection 
Rate Validation 

Testing** 
An unpainted metal 
cylinder 100% (9 of 9) 100% (6 of 6) 100% (6 of 6) 

A white, gray, or 
black sphere 100% (32 of 32) 100% (10 of 10) 100% (10 of 10) 

A “chunk” of 
asphalt or concrete 100% (3 of 3) 100% (6 of 6) 100% (6 of 6) 

Any portion of a 
runway light fixture 
(in-pavement or 
edge light) 

100% (3 of 3) 100% (5 of 5) 100% (5 of 5) 

An adjustable 
crescent wrench 100% (19 of 19) 100% (8 of 8) 100% (8 of 8) 

A deep socket 89% (8 of 9) 100% (6 of 6) 100% (6 of 6) 
A piece of rubber 
from an aircraft tire 100% (3 of 3) 83% (5 of 6) 100% (6 of 6) 

A distorted metal 
strip 78% (7 of 9) 67% (4 of 6) 83% (5 of 6) 

A fuel cap 100% (3 of 3) 100% (4 of 4) 100% (4 of 4) 
A lug nut 78% (7 of 9) 83% (5 of 6) 83% (5 of 6) 
A hydraulic line 100% (3 of 3) 83% (5 of 6) 100% (6 of 6) 
A white PVC pipe 100% (3 of 3) 100% (6 of 6) 100% (6 of 6) 
Total 95 % (100 of 105) 93% (70 of 75) 97% (73 of 75) 

 
* Displays results using training cropping method. 
** Displays results using test cropping method. 
 
5.4.5  ACY Testing Geolocation 

As part of this research, a proof-of-concept FOD geolocation workflow was developed and 
implemented using Microsoft Excel. The goal of this geolocation workflow was to demonstrate 
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the ability to meet location accuracy performance specifications from FAA AC 150/5220-24 
without requiring the use of additional expensive survey equipment or software. 
 
5.4.5.1  Workflow 

To perform geolocation, the three following data sources were used: 
• Image Centers from the sUAS imagery 

o These contain the image name and the coordinates (latitude/longitude) of the 
center of the image. This information is contained in the imagery Exchangeable 
Image File Format (EXIF) metadata from DJI camera payloads and the imagery 
metadata of most commercially available global navigation satellite system 
(GNSS)-enabled sUAS. 

o The image center latitude and longitude coordinates should be converted to the 
appropriate State Plane coordinates (a grid coordinate system where the X value 
represents the easting, and the Y value represents the northing). 

• While Blue Marble Geographics’ Global Mapper software was used to produce these grid 
coordinates from the sUAS’s native latitude and longitude data, free conversion utilities, 
such as the National Geodetic Survey’s (NGS) Coordination Conversion and 
Transformation Tool (NCAT) (NCAT, n.d.), can be used to perform this step. 

• sUAS Imagery Payload Metadata 

o The image height and width in pixels, and the dimensions of each pixel (the GSD) 
are needed to compute distances. 

• FastFlow anomaly output 

o A .csv file output by the FastFlow routine containing a list of all image names in 
which an anomaly was detected and the position within each image (in X, Y pixel 
coordinates) of the detected anomaly. 

These data sources were entered into a Microsoft Excel workbook that performs the following 
computations: 
 
• The FastFlow anomalies are delivered in pixel distances relative to the upper-left corner 

of the image. These distances are converted to a spatial distance (using the GSD) and a 
bearing relative to the center of the image. 

• An orientation is calculated for each sUAS-captured image by comparing the heading 
between it and the two images taken prior and the two images captured subsequently. 

o The consistency of these headings is evaluated to determine if the sUAS was 
flying in a straight line or if it was turning. 
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o If the sUAS was determined to be flying in a straight line, then the heading 
computed between the prior image and the current image is assumed to be 
representative of the image’s orientation. 

• The image orientation bearing is summed with the FastFlow anomaly’s bearing from 
center. 

• This combined bearing and the previously calculated FastFlow anomaly position’s 
distance from the center are then applied to the image center coordinates to calculate and 
output each anomaly’s position in the State Plane coordinate system. 

• In a commercial implementation of this system, a program can be developed to automate 
this workflow, resulting in coordinates that would then be transferred to a hand-held GPS 
receiver for manual retrieval of the detected FOD. In this proof-of concept 
implementation, the calculated FOD positions were compared to survey measurements 
collected when the FOD was placed on the runway. The accuracy of these comparisons is 
shown in Table 23. The survey measurements were performed via RTK measurements 
with an accuracy greater than 4 cm. 

 
5.4.5.2  Results 

Table 23 displays the implemented geolocation workflow for some FOD detections within the 
ACY datasets. 

Table 23. Geolocation Workflow Accuracy Assessment 

Type of FOD 
Computed Location Surveyed Position 

Error (m) Northing Easting Northing Easting 
Rubber strip 224725.16 468177.27 224725.86 468178.23 0.363 
Fuel Cap 224721.19 468147.38 224720.96 468147.38 0.069 
Wrench 225430.90 468564.78 225433.75 468564.93 0.869 
PVC 225443.52 468539.97 225443.85 468541.66 0.525 
PVC 229440.80 470701.79 229441.65 470702.98 0.444 
Metal scrap 229455.32 470679.55 229455.51 470679.81 0.098 
Asphalt chunk 228895.18 470476.90 228896.88 470476.72 0.522 
Taxi light 228873.16 470464.05 228873.47 470463.97 0.098 

 
As shown in the table, all FOD objects tested via this methodology had their position determined 
with an accuracy exceeding the AC 150/5220-24 requirements. 

5.4.5.3  Limitations 

• The accuracy of the sUAS image center position has a direct bearing on the computed 
FOD location. For this reason, it is recommended to use an sUAS capable of RTK GNSS 
navigation. 

• The location computations all assume nadir photography and a stable imaging payload. If 
imagery is captured during high winds or other conditions that might impact camera 
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stability, then additional computational steps might be needed to correct for camera tilt 
and rotation. 

• All the images captured during this research had a small (approximately 16 m by 11 m) 
footprint. If imagery is collected with a significantly larger footprint, accumulated errors 
will increase in magnitude. 

• The present workflow requires the entire dataset to be processed before computing FOD 
locations. 

 
6.  ASSESSMENT BASED ON AC 150/5220-24 SPECIFICATIONS 

The research team assessed performance against the requirements listed in AC 150/5220-24; 
however, not all requirements were applicable to sUAS and AI. Several requirements were that 
of a mature detection system, as opposed to the nascent nature of this technology, while other 
requirements were outside the scope of this research effort and are listed with recommendations 
to meet the AC requirements.  
 
Table 24 presents the basic performance requirements a FOD detection equipment must perform, 
along with ATR findings. The sUAS-based FOD detection workflow was able to meet four of 
the six required basic functions required by AC 150/5220-24. The two functions not 
demonstrated (providing detection alerts to users and providing a record of detected FOD) could 
be implemented in the future via development of a robust software interface. 

Table 24. Basic Performance Requirements 

Category Basic Performance Requirement ATR Finding 

Basic 
Functions 

Provide surveillance in the AOA as specified by the 
airport. 

Demonstrates ability to meet 
AC specifications for detecting 
FOD in the AOA. 

Detect and locate single and multiple FOD items on the 
AOA. 

Detected single and multiple 
FOD items. Geolocation 
meeting the AC standards 
demonstrated. 

Provide an alert to the user when FOD has been 
detected. 

Alerts possible, requires 
software implementation. 

Operate in conjunction with, and not interfere with, 
airport and aircraft communication, navigation, and 
surveillance systems. 

Demonstrated successful 
operation at towered and non-
towered airports with no 
interference reported. 

Operate in conjunction with, and without interference 
from, normal airport and aircraft operations. 

Demonstrated successful 
operation at towered and non-
towered airports with no 
interference reported. 

Provide a data record of detected FOD, allowing for 
equipment calibration and maintenance, and for 
analysis of the FOD event. 

Robust reporting requires 
software implementation of 
false positive filtering and 
combining true positives with 
the developed geolocation 
workflow. 
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Table 25 outlines the combined FOD object detection results for each item listed within AC 
150/5220-24 for the initial testing and validation testing. Of 180 FOD items, 173 (96%) were 
detected overall. The FOD items not detected included the lug nut (12 of 15 detected), the deep 
socket (14 of 15 detected), and the distorted metal strip (12 of 15 detected).  

Table 25. Detection Performance Requirements 

Category Detection Performance Object Dimensions ATR Finding 

Object 
Detection 

An unpainted metal 
cylinder 

1.2 in. (3.1 cm) high and 
1.5 in. (3.8 cm) in 
diameter 

100% (15 of 15) 

A white, gray, or black 
sphere 

1.7 in. (4.3 cm) in 
diameter (i.e., a standard 
size golf ball) 

100% (42 of 42) 

90% of the following group of objects when placed within a 100 ft by 100 ft (30 
m by 30 m) square in the desired coverage area. One item from each category 

must be included in the group. 
A “chunk” of asphalt or 
concrete 

no larger than 4 in. (10 
cm) in any dimension 100% (9 of 9) 

Any portion of a runway 
light fixture (in-pavement 
or edge light) 

no larger than 4 in. (10 
cm) in any dimension 100% (8 of 8) 

An adjustable crescent 
wrench 

up to 8 in. (20 cm) in 
length 100% (27 of 27) 

A deep socket at least 2 in. (5 cm) in 
length 93% (14 of 15) 

A piece of rubber from an 
aircraft tire 

no larger than 4 in. (10 
cm) in any dimension 100% (9 of 9) 

A distorted metal strip up to 8 in. (20 cm) in 
length 80% (12 of 15) 

A fuel cap no larger than 4 in. (10 
cm) in any dimension 100% (7 of 7) 

A lug nut no larger than 4 in. (10 
cm) in any dimension 80% (12 of 15) 

A hydraulic line up to 8 in. (20 cm) in 
length 100% (9 of 9) 

A white PVC pipe 2 in. (5 cm) in diameter 100% (9 of 9) 
Any two of the objects above, located no more than 10 ft 
(3 m) apart from each other, identified as separate 
objects 

Successfully 
distinguished 
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Table 26 presents different feature aspects of detection performance. The implemented workflow 
was able to achieve the geolocation, inspection frequency, and surveillance area requirements. 
However, further research and development would be needed to develop an sUAS system that 
can operate in low light and inclement weather conditions. Additionally, the sUAS-based 
workflow greatly exceeds the maximum false alarm rate for FOD detection systems with visual 
sensing capability of one per day. 

Table 26. Detection Performance Requirements 

Category Detection Performance 
Performance 
Requirement ATR Finding 

Location 
Accuracy 

Must provide location 
information for a detected 
object 

Within 16 ft (5.0 m) of 
the actual FOD object 
location 

Met AC specification 

Inspection 
Frequency 

Mobile detection systems: 
must provide a mobile 
operations capability to 
enhance mandated airport 
safety self-inspections 

Airport dependent Met AC specification 

Surveillance 
Area 

Airport operator will 
specify the desired 
surveillance (detection) 
area in the AOA requiring 
FOD detection 

The manufacturer of a 
FOD detection system 
must notify the airport 
operator of any locations 
within the specified 
surveillance area where 
detection would not be 
possible 

Met AC specification. 

Weather Must demonstrate the 
detection performance 
under both clear and 
inclement weather 
conditions 

Detect FOD under rain, 
snow, clear and 
inclement weather, 
lighting conditions, and 
time required for the 
system to recover after 
inclement weather 

Further research 
required under low 
light and inclement 
weather conditions  

Alerts and 
Alarms 

Must be able to alert the 
system operator to the 
presence of FOD in 
scanned areas with 
enough information to 
assess the severity of the 
hazard to determine if 
immediate object removal 
is necessary 

False alarms should be 
minimal—1/day with 
visual capabilities, 3/day 
without visual 
capabilities 

Alerting and alarms 
require additional 
software programming 
and implementation  
 
Further research 
required to reduce 
false positive rate 
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Table 27 outlines data and user software performance requirements. Due to the proof-of-concept 
nature of the testing, these were not assessed. However, these features could be implemented 
through a robust software interface.  

Table 27. System Output Requirements 

Category System Output 
Performance 
Requirement ATR Finding 

Detection 
Data 

Data record on detected 
FOD 

Alert time, date, location 
at minimum 

Requires software 
implementation 

Data 
Presentation 

Coordinate scheme, on 
maps of the airport, in an 
operator’s console, or 
broadcast to mobile units 

As specified by the 
airport 

Requires software 
implementation 

Data 
Management 

Digital record Capability to retain the 
data for at least 2 years 
after the detection event 

Requires software 
implementation 

 
7.  NEXT STEPS AND RECOMMENDATIONS 

The sUAS-based FOD detection workflow based on the FastFlow ML deep learning algorithm 
was capable of meeting some of the AC 150/5220-24 requirements, including achieving a 96% 
detection rate for FOD items specified in the AC. However, further research and development 
will be needed for this technology to meet the full set of AC 150/5220-24 requirements, 
including reducing the false positive rate, reducing the data processing time, and implementing a 
software interface for displaying and recording FOD detection alerts. Additionally, further 
research and development would be needed on sUAS and sensing technologies capable of 
detecting FOD in low light and inclement weather conditions. These are discussed in Sections 
7.1–7.5. 
 
7.1  DETECTION OF FOD ITEMS WITH LOW CONTRAST 

Although the FastFlow algorithm had a high true positive rate for objects of larger size and/or 
with distinctive visual appearance compared to the pavement around them, the algorithm 
struggled with objects of small sizes, such as lug nuts and metal strips, that had visual reflective 
similarities to the runway markings. Additionally, FastFlow reported a 16.9% rate of false 
positives per image regardless of cropping method, which must be reduced before the algorithm 
can be put into service as a product. Pieces of FOD that differed in appearance from the 
background pavement on which they were placed were nearly always detected by the FastFlow 
algorithm. In contrast, FOD that very closely matched the pavement on which they were placed 
were much more difficult to detect and were almost always missed by the algorithm. The 
algorithm is reliant upon the capabilities of the sUAS’s camera to generate imagery, which can 
mean that over- or under-saturated sections of image and areas of low contrast could cause the 
algorithm to miss pieces of FOD.  
 
To address the limitation of FOD with a visual appearance that is nearly indistinguishable from 
the surrounding runway, the team proposes exploring two different solutions. The first approach 
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is to test image preprocessing algorithms, such as image normalization and contrast 
enhancement, to determine whether the FOD can be made more visually distinctive. The 
potential downside to this approach is that small non-FOD visual variations in color and pattern 
on the runway might also be enhanced and be more difficult to distinguish from FOD. A second 
approach is to explicitly reason about height differences in the runway by computing a 3D model 
using photogrammetry methods applied to the sUAS imagery. Generating the height value for 
each of the image pixels could allow for visually indistinct FOD or smaller objects, such as lug 
nuts or bolts, to be detectable outside the use of FastFlow. 

7.2  FALSE POSITIVES 

Another challenge revealed by this testing is the high likelihood of false positives being reported 
by the algorithm. While the FastFlow models were trained using images taken from the runway, 
certain visual features (such as chipped paint, cracks, or tar patches) did not appear in large 
quantities. As a result, the algorithm appeared not to learn that these features were not FOD and 
still flagged some of these non-FOD items as FOD. Thus, the default FastFlow algorithm still 
requires very careful curation of images for training, and more research will be needed to reduce 
false positives while still maintaining a high true positive detection rate.  
  
To address the problem of false positives, the research team proposes exploring several different 
solutions. One approach is to carefully curate the image data used to train the FastFlow models. 
For example, because the paint patterns, asphalt coloring, and weathering for each runway are 
unique, the team proposes generating runway-specific models rather than trying to make a 
generic model that will work for all runways. The expectation is that runway-specific models 
would allow the algorithms to learn that specific patterns of chipped paint and tar patches are not 
anomalous but are expected and should not be labeled as FOD.  
 
Another avenue the team recommends exploring is training a group of multiple different runway-
specific FastFlow models that are each focused on separate categories of normal runway, 
including painted lines, cracks, and tar patches, and uniform segments of pavement. This 
approach would make use of a pre-sorting algorithm that will determine whether a crop contains 
any painted lines, cracks, or tar patches,  or is a “clean” segment of pavement. Each collection of 
sorted images will be fed into a different instance of FastFlow that has been trained exclusively 
on images of that type. The expectation is that specialized FastFlow models will be able to 
reduce false positives caused by paint, tar, or rubber tracks. 

Airfield infrastructure, such as lights that are embedded in the runway, typically show up as false 
positives in this testing. The main reason is that there are no sufficient examples of this sort of 
structure in the training set to allow the algorithm to fully generalize this as a normal and 
expected feature. If runway-specific models and feature-specific models are insufficient to 
address this issue, then a specialized detector that is trained via supervised learning to recognize 
these individual lights can be explored. This light detector would run on the images and flag any 
instance of lights that it finds so that any false positive instances reported by FastFlow on those 
lights can be discarded and not passed to the user.  

In addition to finding FOD on the surface of the runway, FastFlow also flagged several other 
non-FOD anomalies that could be indicative of pavement stress on the runway that could require 
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inspection and maintenance. Such stresses include spalling and loose chunks of asphalt which 
might soon become FOD. Because FastFlow is fundamentally only looking for visually apparent 
deviations from a “normal” runway appearance, it will likely flag FOD and surface wear equally. 
Thus, FastFlow could be used in both FOD detection and runway pavement condition inspection 
activities. 

7.3  PROCESSING TIME 

Another limitation of the implemented workflow is the extensive processing time due to 
computing constraints. FastFlow’s runtime performance on an Intel(R) Xeon(R) Gold 5218 CPU 
@ 2.30GHz with an NVIDIA 2080Ti graphics processing unit (GPU) processes images at a rate 
of one full image of data every 4 minutes (approximately three crops per second). The processing 
time will scale linearly with the number of images that are captured for a given runway. The 
process of searching for FOD can be greatly accelerated by increasing the number of 
computers/GPUs that are in use at the same time, as each crop can then be processed 
independently of each other. One potential solution to increasing the processing speed is to 
explore how to modify FastFlow to process multiple crops simultaneously on a single GPU and 
measure the performance increase. Another potential solution is to upload all the raw images to a 
cloud-based service such as Amazon Web Service or Microsoft Azure cloud with multiple GPU 
nodes and have each node process one of the images. At such a scale, the entire dataset could be 
processed in the time it currently takes to process a single image. Additional data management 
infrastructure would be required to activate each of the cloud nodes, upload each image to the 
appropriate nodes, collect the resulting FOD detections, and aggregate all the results into a single 
output that can be presented to the user. 

7.4  SOFTWARE INTERFACE DEVELOPMENT 

The default FastFlow algorithm must be built into a robust FOD-detection software interface 
before it can be deployed for testing in situ at an airport. An application must be built around the 
algorithm that will input a set of geotagged images captured from the sUAS and generate a set of 
runway locations where a technician would go to retrieve the reported FOD. This application 
would address all the sections labeled “requires software implementation” in the AC 150/5220-
24 requirements tables. The research team anticipates that a FOD application would directly 
involve human interaction to visually inspect the images that contain instances of reported FOD 
to determine whether they are true or false positives before dispatching someone to the runway 
to find the FOD to remove it. This application could also include a feature that allows a user to 
tag false positive anomalies that repeatedly show up on a given runway (e.g., light fixtures) as 
being “safe” so that they are not reported as FOD. In addition, the application should allow its 
users to periodically update the runway model should its appearance begin to change by routine 
wear and tear, resurfacing, or repainting, and the visual differences caused by seasonal 
variations. This update process could also be performed incrementally whereby only some 
portion of the runway would need to be updated rather than the entire stretch. Additional work 
would be required to build such a data management system which could store, catalog, and 
process historical collections of images. 
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7.5  OPERATIONS IN LOW-LIGHT AND INCLEMENT WEATHER CONDITIONS  

Due to the proof-of-concept nature of the implemented workflow, testing was only conducted in 
fair weather and daytime lighting conditions. Further research and development would be needed 
on sUAS and sensing technologies capable of detecting FOD in low light and inclement weather 
conditions. Visual camera sensors are limited in their ability to capture imagery in twilight and 
nighttime conditions. sUAS platforms also have specific operation tolerances for wind, 
temperature, and precipitation, which limits the ability to use sUAS in inclement weather 
conditions. Additionally, detecting FOD on wet pavement would likely require additional ML 
model training. 

8.  SUMMARY 

The FAA ATR Branch conducted a research effort to explore the feasibility and maturity of 
using commercially available sUAS and AI/ML algorithms to detect FOD on airport surfaces. 
The objectives of this research effort were to develop a novel, proof-of-concept sUAS-based 
FOD detection workflow using AI/ML algorithms and to assess the workflow to determine 
whether it is capable of meeting all, some, or none of the requirements in FAA AC 150/5220-24. 
 
The research team developed and trained an AI/ML deep learning network as part of a sUAS-
based FOD detection workflow. The research team conducted initial testing of this workflow at 
WWD. The initial testing effort at WWD comprised three stages: small-scale, calibration, and 
full-scale testing. The research team then performed validation testing at ACY to validate the 
initial testing at WWD. This included collecting data on a runway at ACY, training an anomaly 
detection AI/ML algorithm, testing against a variety of FOD targets, and addressing 
requirements such as implementing geolocation and adhering to accuracy requirements set forth 
in FAA AC 150/5220-24.  

The sUAS-based FOD detection workflow based on the FastFlow ML deep learning algorithm 
was capable of meeting some of the AC 150/5220-24 requirements, including achieving a 96% 
detection rate for FOD items specified in the AC. However, further research and development 
will be needed for this technology to meet the full set of requirements laid out in AC 150/5220-
24, including reducing the false positive rate, reducing the data processing time, implementing a 
software interface for displaying and recording FOD detection alerts, and detecting FOD in low-
light and inclement weather conditions.  
  
Finally, the testing led to identification of best methods for data collection. Images captured from 
a nadir vantage point had a significantly higher true positive detection rate than images captured 
from an oblique vantage point. Positive detection rate was also improved by flying the sUAS 
lower to the runway for a 0.2-cm GSD, thereby increasing the image resolution.  
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APPENDIX A—AIRFRAME AND SENSOR SPECIFICATIONS 

DJI Matrice 210 RTK v2 
Type Rotary Aircraft (4) 

Wingspan 25.3” motor-to-motor cross measurement 
Weight 10.83 lb with batteries only 

Max Flight Time ± 25 min 
Average speed of flight during image 

capture ± 15 mph 

Operating Temperature Range -4 °F – 122 °F 
Transmitter Range 5 mi (unobstructed) 

Communication with Transmitter Radio (2.4000 – 2.4835 GHz; 5.725 – 5.850 GHz) 
Maximum sustained wind speed limit 

for safe flight Up to 27 mph 

Lost Link Procedure (if > 3 s) Autonomous return-to-home at predetermined 
above ground level (AGL) with manual override 

available once link has been reestablished. 

Low Battery Procedure 

Pilot override from autonomous to manual control 
and return sUAS to launch location and land when 

battery percentage reaches 20%. If battery 
decreases to level where flight computer can no 

longer maintain current altitude, sUAS will initiate 
autonomous land and current position. 

Operational Area Procedure On board, pre-programed flight area prohibits 
flying outside of pre-determined GeoFence. 

Obstacle Avoidance Forward, Down, Above, DJI Airsense (ADS-B 
Receiver) 

Ingress Protection Rating IP43 
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Zenmuse X7 
Airframe Compatibility DJI Inspire 2, M210 RTK V2 

Gimbal Control 
(3D Stabilized) 

(Detachable Mount*) 

Pitch: -125° to +40° 
Pan: ±300° 

Roll: +90° to -50° 
Still Image Size 24.0 MP (6016x4008) – 3:2 

Ground Sample Distance (GSD) @ 400 
ft AGL 
16 mm 

1.17 in. 

Ground Sample Distance (GSD) @ 400 
ft AGL 
24 mm 

0.78 in. 

Ground Sample Distance (GSD) @ 400 
ft AGL 
3 5mm 

0.54 in. 

Ground Sample Distance (GSD) @ 400 
ft AGL 
50 mm 

0.38 in. 

Sensor Type CMOS – Super 35 APS-C 
Still Image Format JPEG, RAW, RAW + JPEG 

Shutter Mode Electronic Linear for 16 mm & 50 mm 
Mechanical Global for 24 mm & 35 mm 

Max Video Resolution* 4K @ 59.94 FPS 
Max Video Bitrate 100 Mbps 

Video Format MP4/MOV 
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DJI Matrice 300 RTK 
Type Rotary Aircraft (4) 

Wingspan 38” motor-to-motor cross measurement 
Weight 13.9 lb with batteries only 

Max Flight Time ± 55 min 
Average speed of flight during image 

capture ± 15 mph 

Operating Temperature Range -4 °F – 122 °F 
Transmitter Range 5 mi (unobstructed) 

Communication with Transmitter Radio (2.4000 – 2.4835 GHz; 5.725 – 5.850 GHz) 
Maximum sustained wind speed limit 

for safe flight Up to 33 mph 

Lost Link Procedure (if > 3 s) 
Autonomous return-to-home at predetermined AGL 
with manual override available once link has been 

reestablished. 

Low Battery Procedure 

Pilot override from autonomous to manual control 
and return sUAS to launch location and land when 

battery percentage reaches 20%. If battery 
decreases to level where flight computer can no 

longer maintain current altitude, sUAS will initiate 
autonomous land and current position. 

Operational Area Procedure On board, pre-programed flight area prohibits 
flying outside of pre-determined GeoFence. 

Obstacle Avoidance Forward, Backward, Left, Right, Down, Above, 
Ingress Protection Rating IP45 
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Zenmuse P1 
Airframe Compatibility M300 RTK 

Gimbal Control 
(3D Stabilized) 

(Detachable Mount*) 

Pitch: -130° to +40° 
Pan: ±320° 

Roll: +55° to -55° 
Still Image Size 45.0 MP (8192x5460) – 3:2 

Ground Sample Distance (GSD) @ 400 
ft AGL 
24 mm 

0.85 in. 

Ground Sample Distance (GSD) @ 400 
ft AGL 

35 mm (currently only available option) 
0.59 in. 

Ground Sample Distance (GSD) @ 400 
ft AGL 
50 mm 

0.41 in. 

Sensor Type 35 mm (Full Frame) 
Still Image Format JPEG, RAW, RAW + JPEG 

Shutter Mode Mechanical Global 
Max Video Resolution* 4K @ 60 FPS 

Max Video Bitrate 100 Mbps 
Video Format MP4/MOV 
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